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Online (with Video Conference) Presentation 
https://us02web.zoom.us/j/81959685121?pwd=TlZhSFBYWWdLM3U3L0V

vYWEybVRkQT09 
 

 
 

IMPORTANT, PLEASE READ CAREFULLY 
 

 To be able to make a meeting online, login via https://zoom.us/join site, enter ID 
instead of “Meeting ID or Personal Link Name” and solidify the session. 

 The Zoom application is free and no need to create an account. 
 The Zoom application can be used without registration. 
 The application works on tablets, phones and PCs. 
 Moderator - responsible for the presentation and scientific discussion (question-

answer) section of the session. 
Points to Take into Consideration - TECHNICAL INFORMATION 

 Make sure your computer has a microphone and is working. 
 You should be able to use screen sharing feature in Zoom. 
 Attendance certificates will be sent to you as pdf at the end of the congress. 
 Requests such as change of place and time will not be taken into consideration in 

the congress program. 
 If you think there are any deficiencies / spelling mistakes in the program, please 

inform by e-mail until October 2, 2020 (17:00) at the latest. 
 (All speakers required to be connected to the session 15 min before the session 

starts) 
 Moderator is responsible for ensuring the smooth running of the  presentation, 

managing the group discussion and dynamics.  
 Before you login to Zoom please indicate your name_surname and HALL 

number, exp. Hall 1, Kemal SUNAL 
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AYRIK ZAMANLI CAPUTO-FABRİZİO KESİRSEL MERTEBEDEN LOJİSTİK 
MODELİN DİNAMİK ANALİZİ 

DYNAMICAL ANALYSIS OF DISCRETE TIME LOGISTIC MODEL WITH CAPUTO-
FABRİZİO FRACTIONAL ORDER DERIVATIVE 

Hatice KARAKAYA 

Doktora öğrencisi, Erciyes üniversitesi Fen Bilimleri Enstitüsü Matematik Anabilim Dalı, 

Kayseri, Türkiye 

ORCID NO: 0000-0002-0161-3752 

Doç. Dr. Şenol KARTAL 

Nevşehir Hacı Bektaş Veli Üniversitesi Eğitim Fakültesi Matematik Anabilim Dalı, 

Nevşehir, Türkiye 

ORCID NO: 0000-0003-1205-069X 

ÖZET 

Bu çalışmada, helianthus bitkisinin yıllık büyüme oranını tanımlayan kesirsel mertebeden 
Caputo-Fabrizio lojistik modeli ele alınmıştır. Modele ilk olarak İki Adımlı Adams-Bashforth 
Metoduna dayalı bir ayrıklaştırma işlemi uygulanmış ve ardından bir fark denklem sistemi elde 
edilmiştir. Ayrık sistemin pozitif denge noktasının kararlılık koşulları, Schur-Cohn kriteri 
kullanılarak belirlenmiştir. Dahası, çatallanma analizi ile ayrık sistemin pozitif denge noktası 
civarında Neimark-Sacker çatallanması olduğu gösterilmiştir. Neimark-Sacker çatallanmasının 
yönü ve kararlılığı, normal form ve merkez manifold teorisi kullanılarak belirlenmiştir. Ayrıca 
maksimum Lyapunov üstellerinin hesaplanmasıyla sistemde kaotik davranışların varlığı 
araştırılmıştır. Parametre değerleri, biyolojik gerçeklerle uyumlu olması için literatürde verilen 
deneysel verilerden seçilmiştir. Son olarak, teorik sonuçların doğruluğunu göstermek için 
nümerik simülasyonlar kullanılmıştır.   

Anahtar Kelimeler: Caputo-Fabrizio Kesirsel Merebeden Türev, Lojistik Diferansiyel 
Denklem, İki Adımlı Adams-Bashfort Metodu, Neimark-Sacker Çatallanması 

 

ABSTRACT 

In this paper, the Caputo-Fabrizio fractional order logistic model which describes annual 
growth rate of the helianthus plant is considered. Firstly, a discretization process based on Two 
Step Adams-Bashforth Method is applied to the model and then we obtain a system of 
difference equations. Stability conditions of positive equilibrium point of the discrete system 
are determined by using Schur-Cohn criterion. Morever, we also deal with the bifurcation 
analysis and show that the discrete system undergoes Neimark-Sacker bifurcation around the 
positive equilibrium point. The direction and stability of the Neimark-Sacker bifurcation are 
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determined by using the normal form and center manifold theory. We also investigate the 
chaotic behavior of the system by calculating the maximum Lyapunov exponents. Parameter 
values are selected from experimental data that is given in the literature in order to be 
compatible with biological fact. Finally, numerical simulations are used to demonstate the 
accuracy of theoretical result.  

Keywords: Caputo-Fabrizio Fractional  Order Derivative, Logistic Differential Equation, Two 
Step Adams-Bashforth Method, Neimark-Sacker Bifurcation 
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K-JACOBSTHAL-LUCAS DİZİSİNİN KATALAN DÖNÜŞÜMÜ 

CATALAN TRANSFORM OF THE K-JACOBSTHAL-LUCAS SEQUENCE 

Hakan AKKUŞ 

Yüksek Lisans Öğrencisi, Erzincan Binali Yıldırım Üniversitesi Fen-Edebiyat Fakültesi 
Matematik Bölümü, Erzincan, Türkiye 

 (Sorumlu Yazar) 

ORCID NO: 0000-0001-9716-9424 

Dr. Öğr. Üyesi Rabia Nagehan ÜREGEN 

Erzincan Binali Yıldırım Üniversitesi Eğitim Fakültesi Matematik ve Fen Bilimleri Eğitimi 
Bölümü, Erzincan, Türkiye 

ORCID NO: 0000-0002-6824-4752 

Prof. Dr. Engin ÖZKAN 

Erzincan Binali Yıldırım Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü, Erzincan, 
Türkiye  

ORCID NO: 0000-0002-4188-7248 

ÖZET 

Bu çalışmada k-Jacobsthal-Lucas dizisinin 𝑆𝑆𝑘𝑘,𝑛𝑛 catalan dönüşümünün C𝑆𝑆𝑘𝑘,𝑛𝑛 tanımlanmıştır.k-
Jacobsthal-Lucas dizisinin 𝑆𝑆𝑘𝑘,𝑛𝑛 catalan dönüşümünü elde edilmiştir. Ayrıca C𝑆𝑆𝑘𝑘,𝑛𝑛dönüşümü alt 
üçgen matris olan Catalan matrisi C ile n x 1 tipindeki 𝑆𝑆𝑘𝑘 matrisinin çarpımı olarak yazılmıştır 
ve bazı k-Jacobsthal-Lucas sayılarının Hankel dönüşümü bulunmuştur. 

Anahtar Kelimeler:  k-Pell dizisi, k- Lucas dizisi, k-Fibonacci dizisi, Catalan Dönüşümü, 
Hankel Dönüşümü  

 

 

ABSTRACT 

In this study, 𝐶𝐶𝑆𝑆𝑘𝑘,𝑛𝑛 of 𝑆𝑆𝑘𝑘,𝑛𝑛 Catalan transformation of 𝑘𝑘−Jacobsthal-Lucas sequence is defined. 
𝑆𝑆𝑘𝑘,𝑛𝑛  Catalan transformation of 𝑘𝑘−Jacobsthal-Lucas 𝑆𝑆𝑘𝑘,𝑛𝑛 sequences is obtained.In addition the 
transformation of C𝑆𝑆𝑘𝑘,𝑛𝑛 is written as the product of the Catalan matrix C, which is the lower 
triangular matrix, and the 𝑆𝑆𝑘𝑘 matrix of type 𝑛𝑛 𝑥𝑥 1, and the Hankel transformations of some k-
Jacobsthal-Lucas numbers has been found. 

Keywords: k-Pell sequences, k-Lucas sequences, k-Fibonacci sequences, Catalan Transform, 
Hankel Transform 
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SOME COMMON FIXED POINT THEOREMS IN Ƒ-METRIC SPACES 

Ƒ-METRİK UZAYLARDA BAZI ORTAK SABİT NOKTA TEOREMLERİ 

Dr. Öğr. Üyesi Demet BİNBAŞIOĞLU 

Gaziosmanpaşa Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü, Tokat,Türkiye  

ORCID NO: 0000-0001-7041-5277 

ÖZET 

Son zamanlarda, Jleli ve Samet tarafından Ƒ metrik uzay kavramı tanıtılmış ve bu uzayların 
doğal topolojisi tanımlanmıştır. Ayrıca bu uzaylarda Banach sabit nokta prensibinin yeni bir 
versiyonu verilmiştir. Bu çalışmamızda Ƒ metrik uzaylarda bazı ortak sabit nokta teoremleri 
kanıtlanmıştır. 

Anahtar Kelimeler : Ƒ Metrik Uzay, Büzülme Dönüşümü, Ortak Sabit Nokta Teoremi 

 

ABSTRACT 

Lately, the concept of Ƒ metric space has been introduced and have been defined a natural 
topology in this spaces by Jleli and Samet. Also a new version of Banach contraction principle 
has been given in the Ƒ metric spaces. In this paper, we prove some common fixed point 
theorems in the spaces.  

Keywords: Ƒ Metric Space, Contraction Mapping, Common Fixed Point Theorem 
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STUDENTS’ MATHEMATICS PERFORMANCE, ENGAGEMENT AND 
INFORMATION AND COMMUNICATION TECHNOLOGY COMPETENCIES IN A 

FLIPPED CLASSROOM ENVIRONMENT 

Ryan Jay Bernales Gumban 

Malinao High School Extension- Gastav Campus, Gastav, Banisilan, Cotabato, Department of 
Education, 9416 Philippines 

Denis Abao Tan 

Central Mindanao University, University Town, Musuan, Bukidnon, 8710 Philippines 

ABSTRACT 

An investigation was conducted to ascertain the effectiveness of the Flipped Classroom in the 
mathematics performance, engagement, and ICT competencies of the Grade 9 students of 
Malinao High School Extension- Gastav Campus. Specifically, the study sought to: (1) identify 
the level of mathematics performance of the students when exposed to flipped classroom; (2) 
determine the level of students’ engagement in Mathematics with the use of flipped classroom; 
(3) ascertain the level of students’ ICT competencies with the use of flipped classroom; (4) 
differentiate the level of Mathematics performance of the students with the integration of 
flipped classroom; (5) find out if there is a significant difference in students’ level of 
engagement in Mathematics with the integration of flipped classroom; (6) distinguish if there a 
significant difference in students’ ICT Competencies with the integration of flipped classroom.  

A one shot pretest-posttest was conducted to assess the effectiveness of the flipped Classroom. 
Results showed that students exposed to Flipped classroom have significantly higher 
performance in terms of posttest and retention test scores. Also, a significant difference in the 
students’ mathematics engagement and ICT competencies before and after the intervention was 
found. Students gained basic knowledge of ICT competencies based on the increase in the over-
all mean scores from the pre-test to post test. They acquired basic skills after exposure in a 
Flipped classroom. Moreover, there was a significant difference in the affective and cognitive 
engagement of students in Mathematics when exposed to the flipped classroom. Students were 
significantly engaged in both cognitive and affective aspects while learning Mathematics. 
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OPTICAL PHASE CONJUGATION AND ITS APPLICATIONS 

Dr. Naveen Gupta 

Lovely Professional University Phagwara, India 

ABSTRACT 

This paper presents a review on a novel nonlinear effect known as optical phase conjugation. 
Emphasis is put on providing fundamental aspects of this phenomenon by avoiding complicated 
mathematics. Various methods like four wave mixing and stimulated Brillouin scattering to 
produce optical phase conjugation have been discussed in detail. Various applications of this 
phenomenon also have been discussed. 

Keywords: Phase conjugation, Stimulated Brillouin scattering, Four wave mixing. 
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KOTANJANT DEMETTE KONFORMAL VE HOLOMORFİK PROJEKTİF 
VEKTÖR ALANLARI 

CONFORMAL AND HOLOMORPHICALLY PROJECTIVE VECTOR FIELDS ON 
COTANGENT BUNDLES 

Dr. Öğr. Üyesi Lokman BİLEN 

Iğdır Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü, Iğdır, Türkiye 

ORCID NO: 0000-0001-8240-5359  

ÖZET 

(𝑀𝑀,∇) diferensiyellenebilir bir manifold, ∇, 𝑀𝑀 üzerinde bir lineer konneksiyon ve 𝑇𝑇∗𝑀𝑀 de 
(𝑀𝑀,∇) nın ∇ 𝑅𝑅  Riemann genişlemesi metriğine sahip kotanjant demeti olsun. Sunulan bu 
çalışmada kotanjant demette Riemann genişlemesi metriğine göre konformal ve holomorfik 
projektif vektör alanlarının detaylı sınıflandırması ve bu vektör alanları ile ilgili bazı geometrik 
sonuçlar verilmiştir.  

Anahtar Kelimeler: Konformal vektör alanı, holomorfik projektif vektör alanı, Riemann 
genişlemesi.  

 

 

ABSTRACT 

Let (𝑀𝑀,∇) be a differentiable manifold with lineer connection ∇ and 𝑇𝑇∗𝑀𝑀 it’s cotangent bundle 
with Riemannian extension metric ∇ 𝑅𝑅 . In the present paper we presents detailed classification 
of conformal and holomorphically projective vector fields on cotangent bundle with respect to 
the Riemannian extension and some geometric results related to them. 

Keywords: Conformal vector field, holomorphically projective vector field, Riemannian 
extension.  
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GROWTH OF SOLUTIONS OF A CLASS OF LINEAR DIFFERENTIAL 
EQUATIONS AROUND AN ISOLATED ESSENTIAL SINGULARITY 

Houari FETTOUCH 

Laboratory of Pure and Applied Mathematics, University of Mostaganem, UMAB, Algeria. 

 

ABSTRACT 

In this paper we study the growth of solutions of certain class of linear differential equations 
around an isolated essential singularity point. For that, we transform by making use a 
conformal mapping certain results from the complex plane to a neighborhood of a singular 
point. We will see that there are a large similarities between the complex plane results and this 
investigation. 

INTRODUCTION AND STATEMENT OF RESULTS 

Throughout this paper, we assume that the reader is familiar with the fundamental results and 
the standard notations of the Nevanlinna value distribution theory of meromorphic function 
on the complex plane  C   and in the unit disc  { }1:C <∈= zzD  (see [haym, yang]). The 

importance of this theory has inspired many authors to find modifications and generalizations 
to different domains. Extensions of Nevanlinna Theory to annuli have been made by [bieb, 
khri, kond, korh, mark]. In this paper, we concentrate our investigation near an isolated 

essential singular point. We start to give the appropriate definitions. Set  { }∞∪= CC   and 

suppose that  ( )zf   is meromorphic in   , where   . Define the counting 

function of    by 

( ) ( ) ( ) ( ) ,log,,,,
0

rfndt
t

fnftnfrN
r

z ∞−
∞−

−= ∫
∞

 

where  ( )ftn ,   counts the number of poles of  ( )zf   in the region  { } { }∞∪−≤∈ 0:C zztz   

each pole according to its multiplicity; and the proximity function by  

( ) ( ) .ln
2
1, 0

2

0
0

ϕ
π

ϕ
π

drezffrm i
z −= +∫  

The characteristic function of    is defined in the usual manner by 

( ) ( ) ( ).,,,
000

frNfrmfrT zzz +=  

 

In addition, the order of meromorphic function  ( )zf   near  0z   is defined by 
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( ) ( )
.

log
,log

suplim, 0

0
0 r

frT
zf z

r
T −

=
+

→
σ  

For an analytic function  ( )zf   in  { },C 0z−   we have also the definition 

( ) ( )
,

log
,loglog

suplim, 0

0
0 r

frM
zf z

r
M −

=
++

→
σ  

where  ( ) ( ){ }.:max, 00
rzzzffrM z =−=   

For example, the function  ( )
( )

,1exp
0 








−
= nzz

zf   where  { },0\N∈n   we have  

( )






= nz r

frM 1exp,
0

 , and then  ( ) nzfM =0,σ  . We have also  

( ) ( ) ( ) ,1ln,, 0

2

0
2
1

00 n
i

zz r
drezffrmfrT =−∫== + ϕϕ

π

π   and so  ( ) nzfT =0,σ  . 

For the function  ( ) ( )







−
−

=
z

zf
1

1exp  , we have  ( ) 11, =fσ   while in the unit disc we have  

( ) ( ) 0== ff MT σσ  . 

We see that in the unit disc we have  ( ) ( ) ( ) 1+≤≤ fff TMT σσσ   and in the complex plane 

we have  ( ) ( )ff MT σσ =  . Now, how about the relation between  ( )0, zfTσ   and  ( )0, zfMσ  

? Below, in Lemma lem2, we will prove that if  ( )zf   is meromorphic function in  { }0C z−   

and  ( ) ( )wzfwg 1
0 −=  , then  ( )wg   is a meromorphic function in  C   and we have  

( ) ( )frTgRT z ,,
0

=  ; where  rR 1=  ; which implies that  ( ) ( )00 ,, zfzf MT σσ =  . So, we can 

use the notation  ( )0, zfσ   without any ambiguity. 

By the usual manner, we define the hyper order near    as follows: 

 

( ) ( )
,

log
,loglog

suplim, 0

0
0,2 r

frT
zf z

r
T −

=
++

→
σ  

 

( ) ( )
.

log
,logloglog

suplim, 0

0
0,2 r

frM
zf z

r
M −

=
+++

→
σ  

The linear differential equation 

( ) ( ) ,0=+′+′′ fezBfezAf bzaz  
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where  ( )zA   and  ( )zB   are entire functions, is investigated by many authors; see for example 
[ozaw,chen1,chen2,gund2]. In [chen1], Chen proved that if  0≠ab   and  ba argarg ≠   or  

cba =    ( )1or  10 ><< cc  , then every solution  ( ) 0≡/zf   of (1) is of infinite order. Recently, 
the second author proved results similar to (1) in the unit disc concerning the differential 
equation 

 

 

where  ( )zA   and  ( )zB   are analytic in the unit disc,  0>µ   and  ba argarg ≠   or  cba =    

( )10 << c  , see [ham12]. However, the method of [ham12] does not work in general for the 
case  10 ≤< µ  : see the discussion in [ham12]. The case  1=µ   will be investigated in the 

following theorem with certain modifications on  ( )zA   and  ( ).zB   

 Theorem Let  baz ,,0   be complex constants such that  ba argarg ≠   or  cba =    

  and    be a positif integer. Let  ( ) ( ) 0, ≡/zBzA   be analytic functions in  { }0C z−   

with  ( ) ( ){ } .,,,max 00 nzBzA <σσ   Then, every solution  ( ) 0≡/zf   of the differential equation 

( ) ( ) ( ) ( ) .000 =+′+′′ −− fezBfezAf
nn zz

b
zz

a

 

satisfies  ( ) ∞=0, zfσ   with  ( ) ., 02 nzf =σ   

In [frei], Frei proved the following result in the complex plane. 

 Theorem  [frei] If the differential equation 

0=+′+′′ − cggeg w  

where  0≠c   is a complex constant, possesses a solution  0≡/g   of finite order, then  
2kc −=   where    is a positive integer. Conversely, for each positive integer  k  , the 

equation (eq1) with  2kc −=  , possesses a solution  g   which is a polynomial in  we   of 
degree  k  . 

The analogous of this results, near a singular point   , is as the following. 

 Theorem Let  0,0 zc ≠   be complex numbers. If the differential equation 

( )
( )

( ) ( )
021

4
00

1

2
0

0 =
−

+′














−
−

−
+′′ −

−

f
zz

cf
zz

e
zz

f zz  

possesses a solution  ( ) 0≡/zf   of finite order  ( ) ∞<0, zfσ   then  2kc −=  , where    is an 

( ) ( ) ( ) ( ) ,000 =+′+′′ −− fezBfezAf zz
b

zz
a

µµ
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integer. Conversely, for each positive integer   , the equation (eq2) with   , 

possesses a solution    which is a polynomial in    of degree   . 

 Example  ( ) ( )zzezf −+= 0

1

1 1   is a solution of the differential equation 

( )
( )

( ) ( )
.0121

4
00

1

2
0

0 =
−

−′










−
−

−
+′′ −

−

f
zz

f
zz

e
zz

f zz  

 

 Example  ( ) ( ) ( )zzzz eezf −− ++= 00

21

2 641   is a solution of the differential equation 

( )
( )

( ) ( )
.0421

4
00

1

2
0

0 =
−

−′










−
−

−
+′′ −

−

f
zz

f
zz

e
zz

f zz  

 

 Theorem Let  ( ) ( ) ( )zAzAzA k 110 ,...,,0 −≡/   be meromorphic functions in  { }0C z−   satisfying 

( ) ,exp0






≥ µ

α
r

zA  

 

( ) ,0,exp ≠






≤ j

r
zAj µ

β  

where  ( ) ( ) [ )πθθθµβα 2,0,arg,0,0 210 ⊂∈=−>≥> zz   and  00 →=− rzz  . Then, 

every solution  ( ) 0≡/zf   of the differential equation 

( ) ( ) ( ) ( ) ( ) ,0... 01
1

1 =+′+++ −
− fzAfzAfzAf k

k
k  

satisfies  ( ) ., 02 µσ ≥zf   

Similar results to Theorem t3 in the complex plane are given in [bel, gund3]. 

 Theorem Let  ( ) ( ) ( )zAzAzA k 110 ,...,,0 −≡/   be analytic functions in  { }0C z−   satisfying  

( ){ } ( )000 ,0:,max zAjzAj σσ <≠  . Then, every solution  ( ) 0≡/zf   of (eq3) satisfies  

( ) ( ).,, 0002 zAzf σσ =   

Preliminaries lemmas 

Throughout this paper, we use the following notations that are not necessarily the same at 
each occurrence: 
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 0,1,0,00 >>>> λγεr   are real constants. 

 ( ]01 ,0 rE ⊂∗   that has finite logarithmic measure  ∞<∫
∗

dtt

r
E1

0

0

χ
 . 

 [ )π2,02 ⊂
∗E   that has a linear measure zero  .0

2

2

0
=∫ ∗ dtEχ

π

  

 Lemma [gund1] Let    be a transcendental meromorphic function in   , and let  1>γ    
0>ε   be given real constants; then 

i) there exists a set  ( )∞⊂ ,11E   that has a finite logarithmic measure and a constant    

that depends only on    such that for all  wR =   satisfying  1ER∉  , we have 

( ) ( )
( ) ( ) ( )[ ] ;,log, k

k

gRTgRT
wg
wg γγλ≤  

ii) there exists a set    that has a linear measure zero and a constant    that 

depends only on    such that for all  [ ) 2\2,0 Eπθ ∈   there exists a constant  ( ) 000 >= θRR   

such that for all    satisfying  [ ) 2\2,0arg Ez π∈   and  0Rzr >=  , we have 

( ) ( )
( ) ( ) ( )[ ] .,log, k

k

gRTRgRT
wg
wg γγλ ε≤  

 

 Lemma Let  f   be a non constant meromorphic function in  { }0C z−   and set  

( ) ( )wzfwg 1
0 −=  . Then,  ( )wg   is meromorphic in  C   and we have 

( ) .,1,
0







= f

R
TgRT z  

 

Remark  By Lemma lem2, if  f   is a non constant meromorphic function in  { }0C z−   and  

( ) ( )wzfwg 1
0 −=   then  ( ) ( )., 0 gzf σσ =   

 Lemma Let f be a non constant meromorphic function in  { }0C z−   and let  0,1 >> εγ   be 

given constants; then  

i) there exists a set  ( ]01 ,0 rE ⊂∗   that has finite logarithmic measure  ∞<∫
∗ dtt

r
E1

0

0

χ
  and a 

constant  0>λ   that depends only on  γ   such that for all  0zzr −=   satisfying  

( ] ∗∈ 10 \,0 Err  , we have 
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( ) ( )
( ) ( );N,log,1

002 ∈























≤ kfrTfrT

rzf
zf

k

zz

k

γγ
λ  

ii) there exists a set  [ )π2,02 ⊂
∗E   that has a linear measure zero and a constant  0>λ   that 

depends only on  γ   such that for all  [ ) ∗∈ 2\2,0 Eπθ   there exists a constant    

such that for all    satisfying  ( ) θ=− 0arg zz   and  00 rzzr <−=  , we have 

( ) ( )
( ) ( ).N,log,1

002 ∈























≤ + kfrTfrT

rzf
zf

k

zz

k

γγ
λ ε  

 

 Lemma Let h be a non constant analytic function in  { }0C z−   of order  ( ) 0, 0 >> ασ zf  . 

Then, there exists a set  ( ]0,0 rF ⊂   of infinite logarirhmic measure  ∞=∫ dtt

r
Fχ

0

0
  such that 

for all  Fr ∈   and  ( ) ( ),,
0

hrMzh z=   we have 

( ) .1log αr
zh >  

 

Lemma [chian] Let jA be meromorphic functions in C and  f   be a meromorphic solution of 

(eq3), assuming that not all coefficients    are constants. Given a real constant   , and 

denoting  ( ) ( )j

k

j
ARTRT ,:

1

0

−

=
∑=  , we have 

( ) ( ) ( ){ } .loglog,log γRTRRTfRm <  

 

We can transform this result near a singular point as the following. 

 Lemma Let jA be meromorphic functions in  { }0C z−   and  f   be a meromorphic solution of 

(eq3) in  { }0C z−  , assuming that not all coefficients  jA   are constants. Given a real constant  

 , and denoting  ( ) ( ) ( ) ( )riz

k

ji

k

j
zz OArTArTrT 1

11

1
0 log,,:

000
+∑∑+=

−

=

−

=
 , we have 

( ) ( ) ( )( ) .log1log,log
000

γ







< rT

r
rTfrm zzz  

Lemma  Let  ( )zA   be analytic function in  { }0C z−   with  ( ) ., 0 nzA <σ   Set  
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( ) ( )
( )

,exp
0 








−
= nzz

azAzg  ( 1≥n  is an integer) 

( ) ( ) ( ),sincos,,0, 0 ϕβϕαϕδβα ϕ nnrezzia a
i +==−≠+=   and  

[ ) ( ){ },0:2,0 =∈= ϕδπϕ aH  (obviously,  H   is of linear measure zero). Then for any given  

0>ε   and for any  [ ) ,\2,0 Hπϕ ∈   there exists  00 >r   such that for    we have 

(i) if  ( ) ,0>ϕδ a   then 

( ) ( ) ( ) ( ) ( ) ,11exp11exp






 +≤≤







 − nana r

zg
r

ϕδεϕδε  

(ii) if  ( ) ,0<ϕδ a   then 

( ) ( ) ( ) ( ) ( ) .11exp11exp






 −≤≤







 + nana r

zg
r

ϕδεϕδε  

 

  

Using (p8)-(p9) with (l3) in (p7), we get 

.1exp,1exp
2

2 0 























≤









+εβα γ
λ

r
frT

rr

k

zk  

 

REFERENCES 

I. Amemiya and M. Ozawa, Non-existence of finite order solutions of  ( ) 0=+′+′′ − wzQwew z  
, Hokkaido Math. J., 10 (1981), 1-17. 

B. Belaidi and S. Hamouda, Orders of solutions of an n-th order linear differential equation 
with entire coefficients, Electron. J. Differential Equations, Vol. 2001(2001), No. 61, pp. 1-5. 

L. Bieberbach, Theorie der gewöhnlichen Differentialgleichungen, Springer-Verlag, 
Berlin/Heidelberg/New York, 1965. 

Z.X. Chen; The growth of solutions of  ( ) ,0=+′+′′ − fzQfef z   where the order  ( ) ,1=Q   
Sci, China Ser. A, 45 (2002), 290-300. 

Z.X. Chen and K. H. Shon; On the growth of solutions of a class of higher order linear 
differential equations, Acta. Mathematica Scientia, 24 B (1) (2004), 52-60. 

Y.-M. Chiang and W.K. Hayman, Estimates on the growth of meromorphic solutions of linear 
differential equations, Comment. math. helv. 79 (2004) 451-470. 

M. Frei, Über die Subnormalen Lösungen der Differentialgleichung  



1. INTERNATIONAL CONGRESS ON MATHEMATICS AND GEOMETRY 
9 DECEMbER 2020 
ANKARA, TURKEY 

PROCEEDINGS bOOK                                               16 www.IzDAS.ORG 

( ) 0. =+′+′′ − wKonstwew z  , Comment. Math. Helv. 36 (1962), 1-8. 

I. Chyzhykov, G. Gundersen and J. Heittokangas, Linear differential equations and 
logarithmic derivative estimates, Proc. London Math. Soc., 86 (2003), 735-754. 

G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus 
similar estimates, J. Lond. Math. Soc. (2), 37 (1988), 88-104. 

G. G. Gundersen, On the question of whether  ( ) 0=+′+′′ − fzBfef z   can admit a solution  
0≡/f   of finite order, Proc. Roy. Soc. Edinburgh 102A (1986), 9-17. 

G. Gundersen, Finite order solutions of second order linear di erential equations, Trans. 
Amer. Math. Soc. 305 (1988), pp. 415-429. 

S. Hamouda, Properties of solutions to linear differential equations with analytic coefficients 
in the unit disc, Electron. J. Differential Equations, Vol 2012 (2012), No. 177, pp. 1-9. 

S. Hamouda, Iterated order of solutions of linear differential equations in the unit disc, 
Comput. Methods Funct. Theory, 13 (2013) No. 4, 545-555. 

W.K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964. 

J. Heittokangas, On complex differential equations in the unit disc, Ann. Acad. Sci. Fenn. 
Math. Diss. 122 (2000), 1-14. 

J. Heittokangas, R. Korhonen and J. Rättyä, Growth estimates for solutions of linear complex 
differential equations, Ann. Acad. Sci. Fenn. Math. 29 (2004), No. 1, 233-246. 

J. Heittokangas, R. Korhonen and J. Rättyä, Fast growing solutions of linear differential 
equations in the unit disc, Result. Math. 49 (2006), 265-278. 

A.Ya. Khrystiyanyn, A.A. Kondratyuk, On the Nevanlinna theory for meromorphic functions 
on annuli, Matematychni Studii 23 (1) (2005) 19--30. 

A.A. Kondratyuk, I. Laine, Meromorphic functions in multiply connected domains, in: Fourier 
Series Methods in Complex Analysis, in: Univ. Joensuu Dept. Math. Rep. Ser., vol. 10, Univ. 
Joensuu, Joensuu, 2006, pp. 9-111. 

R. Korhonen, Nevanlinna theory in an annulus, in: Value Distribution Theory and Related 
Topics, in: Adv. Complex Anal. Appl., vol. 3, Kluwer Acad. Publ., Boston, MA, 2004, pp. 
167-179. 

I. Laine, Nevanlinna theory and complex differential equations, W. de Gruyter, Berlin, 1993. 

E. L. Mark and Y. Zhuan, Logarithmic derivatives in annulus, J. Math. Anal. Appl. 356 
(2009) 441-452. 

L. Yang, Value distribution theory, Springer-Verlag Science Press, Berlin-Beijing. 1993. 

 



1. INTERNATIONAL CONGRESS ON MATHEMATICS AND GEOMETRY 
9 DECEMbER 2020 
ANKARA, TURKEY 

PROCEEDINGS bOOK                                               17 www.IzDAS.ORG 
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ÖZET 

Bu çalışmanın amacı, lineer Lane-Emden diferansiyel denklemlerinin yaklaşık çözümlerini, 
Morgan-Voyce polinomları yardımıyla bulmaktır. Yöntemde, yaklaşık çözümlerin matris 
temsili ve yaklaşık çözümlerin türevlerinin matris temsili Morgan-Voyce polinomlarına bağlı 
olacak şekilde belirlenir. Bu yönteme göre verilen problem Morgan-Voyce katsayılarını içeren 
bir cebirsel sisteme indirgenmiştir. Morgan-Voyce katsayıları bu sistem çözülerek elde edilir. 
Bu katsayılar çözüm formuna yazılır ve yaklaşık çözüm Morgan-Voyce polinomlarına bağlı 
olarak bulunur. Ek olarak, rezidüel hata fonksiyonu ile bir hata problemi oluşturulur ve bu hata 
problemi Morgan-Voyce kollokasyon metodu kullanılarak çözülür. Bu yönteme göre, 
problemin tam çözümü bilinmediğinde, hatalar yaklaşık olarak hesaplanabilir. Bu iki yöntem 
iki örnek için uygulanır. Sonuçlar tablolar ve grafiklerde gösterilir. Bu sonuçlara göre, 
literatürdeki diğer yöntemlere göre daha iyi sonuç verdiği gözlemlenir. Dolayısıyla tüm 
bunlardan yöntemin başarılı olduğu söylenebilir. Ayrıca, sonuçlar Matlab programında yazılan 
kodlar ile elde edilir. 

Anahtar Kelimeler: Kollokasyon Noktaları, Kollokasyon Yöntemi, Lane–Emden Diferansiyel 
Denklemleri, Morgan-Vorgan polinomları 

 

ABSTRACT 

The aim of this study is to find approximate solutions of linear Lane-Emden differential 
equations with the help of Morgan-Voyce polynomials. In the method, the matrix representation 
of the approximate solutions and the matrix representation of the derivatives of the approximate 
solutions are determined depending on Morgan-Voyce polynomials. The problem given 
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according to this method is reduced to an algebraic system containing Morgan-Voyce 
coefficients. Morgan-Voyce coefficients are obtained by solving this system. These coefficients 
are written in the solution form and the approximate solution is found based on Morgan-Voyce 
polynomials. In addition, an error problem is created with the residual error function and this 
error problem is solved using the Morgan-Voyce collocation method. According to this method, 
the errors can be approximated when the exact solution to the problem is unknown. These two 
methods are applied for two examples. Results are shown in tables and graphs. According to 
these results, it is observed that it gives better results than other methods in the literature. 
Therefore, it can be said that the method is successful from all these. Also, the results are 
obtained with the codes written in the Matlab program. 

Keywords: Collocation Method, Collocation Points, Lane–Emden Differential Equations, 
Morgan-Vorgan Polynomials 

 

1. INTRODUCTION 

Lane-Emden type equations can be modeled many phenomena such as thermal explosions 
(Chambre, 1952), stellar structure (Chandrasekhar, 1967) and the thermal behavior of a 
spherical gas cloud, isothermal gas spheres and thermionic currents (Richardson, 1921). There 
are many analytical methods for Lane-Emden type equations. However, it is difficult or 
impossible to solve analytically. Therefore, numerical methods such as the Legendre wavelets 
(Yousefi, 2006), the Bessel collocation method (Yüzbaşı & Sezer, 2011), (Yüzbaşı & Sezer, 
2013) the Hermite functions collocation method (Parand, Dehghan, Rezaei, & Ghader, 2010), 
the variational iteration method (Yildirim & Öziş, 2009), (Dehghan & Shakeri, 2008), the B-
spline method (Caglar & Caglar, 2006), the homotopy perturbation method (Yildirim & Öziş, 
2007), (Ramos, 2008), (Chowdhury & Hashim, 2009), the rational Legendre pseudospectral 
method (Parand, Shahini, & Dehghan, 2009), the Adomian decomposition method (Wazwaz, 
2001), the Pade series method (Vanani & Aminataei, 2010), the nonperturbative approximate 
method (Shawagfeh, 1993), and the variational approach method (He, 2003), have been studied. 
On the other hand, numerical solutions of high-order linear differential-difference equations 
(Türkyılmaz, Gürbüz, & Sezer, 2016), generalized functional integro-differential equations of 
Volterra-Type (Ozel, Kürkçü, & Sezer, 2019) and nonlinear ordinary differential equations with 
quadratic and cubic terms (Tarakçı, Özel, & Sezer, 2020) related to Morgan-Voyce polynomials 
have been used to solve numerically.  

In this paper, we will study the Lane - Emden type differential equations  

𝐿𝐿[𝑦𝑦(𝑥𝑥)] = 𝑦𝑦′′(𝑥𝑥) +
𝛼𝛼
𝑥𝑥
𝑦𝑦′(𝑥𝑥) + 𝑝𝑝(𝑥𝑥)𝑦𝑦(𝑥𝑥) = 𝑔𝑔(𝑥𝑥), 0 ≤ 𝑥𝑥 ≤ 𝑏𝑏 (1) 

with the conditions 
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�(𝑎𝑎𝑗𝑗𝑘𝑘𝑦𝑦(𝑘𝑘)(0) +
1

𝑘𝑘=0

𝑏𝑏𝑗𝑗𝑘𝑘𝑦𝑦(𝑘𝑘)(𝑏𝑏)) = 𝜆𝜆𝑗𝑗 , 𝑗𝑗 = 0,1. (2) 

Here, while 𝑝𝑝(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are the defined functions on interval 0 ≤ 𝑥𝑥 ≤ 𝑏𝑏, 
𝛼𝛼,𝑎𝑎𝑗𝑗𝑘𝑘, 𝑏𝑏𝑗𝑗𝑘𝑘 and 𝜆𝜆𝑗𝑗 are real or complex constants. Also, 𝑦𝑦(0)(𝑥𝑥) =  𝑦𝑦(𝑥𝑥) is the function to be 
determined. 

The first aim of this study is to obtain the approximate solution of the Equation (1)-(2) 
depending on the Morgan-Voyce polynomials in the form 

𝑦𝑦𝑁𝑁(𝑥𝑥) = �𝑎𝑎𝑛𝑛 𝐵𝐵𝑛𝑛(𝑥𝑥)
𝑁𝑁

𝑛𝑛=0

 (3) 

The second aim of this study is to obtain better approximate solution by using the residual error 
estimation technique as 

𝑦𝑦𝑁𝑁,𝑀𝑀(𝑥𝑥) = 𝑦𝑦𝑁𝑁(𝑥𝑥) + 𝑒𝑒𝑁𝑁,𝑀𝑀(𝑥𝑥) (4) 

where 

𝑒𝑒𝑁𝑁,𝑀𝑀(𝑥𝑥) = �𝑎𝑎𝑛𝑛∗  𝐵𝐵𝑛𝑛(𝑥𝑥)
𝑀𝑀

𝑛𝑛=0

. (5) 

In the Equations (3)-(5), 𝑁𝑁 and 𝑀𝑀 are any chosen positive integers such that 𝑀𝑀 ≥ 𝑁𝑁 ≥ 2 and 
𝑎𝑎𝑛𝑛,𝑎𝑎𝑛𝑛∗  are the unknown Morgan-Voyce coefficients. Also, 𝐵𝐵𝑛𝑛(𝑥𝑥) are the Morgan-Voyce 
polynomials defined by (Stoll & Tichy, 2008) 

𝐵𝐵𝑛𝑛(𝑥𝑥) = ��
𝑛𝑛 + 𝑘𝑘 + 1
𝑛𝑛 − 𝑘𝑘 � 𝑥𝑥𝑘𝑘.

𝑛𝑛

𝑘𝑘=0

 
     
(6) 

The recurrence relationship of Morgan-Voyce polynomials 𝐵𝐵𝑛𝑛(𝑥𝑥) is (Stoll & Tichy, 2008) 

𝐵𝐵𝑛𝑛(𝑥𝑥) = (𝑥𝑥 + 2)𝐵𝐵𝑛𝑛−1(𝑥𝑥) − 𝐵𝐵𝑛𝑛−2(𝑥𝑥),𝑛𝑛 ≥ 2 

such that the first two Morgan-Voyce polynomials are 𝐵𝐵0(𝑥𝑥) = 1 and 𝐵𝐵1(𝑥𝑥) = 𝑥𝑥 + 2. 

Additionally, the Morgan-Voyce polynomials 𝐵𝐵𝑛𝑛(𝑥𝑥) are solutions of the differential equation 
(Stoll & Tichy, 2008) 

𝑥𝑥(𝑥𝑥 + 4)𝐵𝐵𝑛𝑛′′(𝑥𝑥) + 3(𝑥𝑥 + 2)𝐵𝐵𝑛𝑛′ (𝑥𝑥) − 𝑛𝑛(𝑛𝑛 + 2)𝐵𝐵𝑛𝑛(𝑥𝑥) = 0 

2. MORGAN-VOYCE COLLOCATION METHOD 

In this section, we write the matrix form of the approximate solution of (3) as 
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𝑦𝑦𝑁𝑁(𝑥𝑥) = 𝐁𝐁(𝑥𝑥)𝐀𝐀 (7) 

where 𝐁𝐁(𝑥𝑥) = [𝐵𝐵0(𝑥𝑥) 𝐵𝐵1(𝑥𝑥) ⋯ 𝐵𝐵𝑁𝑁(𝑥𝑥)] and 𝐀𝐀 = [𝑎𝑎0 𝑎𝑎1 ⋯ 𝑎𝑎𝑁𝑁]𝑇𝑇 . After, through the 
relations      (6), we write the matrix 𝐁𝐁(𝑥𝑥) in (7) as  

𝐁𝐁(𝑥𝑥) = 𝐗𝐗(𝑥𝑥)𝐃𝐃 (8) 

where 

𝐗𝐗(𝑥𝑥) = [1 𝑥𝑥 ⋯ 𝑥𝑥𝑁𝑁] and 𝐃𝐃𝑇𝑇 =

1
0 0

0

2 3
0

1 0

N 1 N 2 2N 1
N N 1 0

  
  

  
    
    
    
 
 
 + + +     
      −      





   



 

So, we take the first derivative of the matrix form (8) in the form 

𝐁𝐁′(𝑥𝑥) = 𝑿𝑿′(𝑥𝑥)𝑫𝑫 = 𝑿𝑿(𝑥𝑥)𝐌𝐌𝑫𝑫 (9) 

and we take the second derivative of the matrix form (8) in the form  

𝐁𝐁′′(𝑥𝑥) = 𝑿𝑿′′(𝑥𝑥)𝑫𝑫 = 𝑿𝑿(𝑥𝑥)𝐌𝐌2𝑫𝑫 (10) 

where 

𝐌𝐌𝑇𝑇 =

0 0 0 0 0 0
1 0 0 0 0 0
0 2 0 0 0 0

0 0 0 N 1 0 0
0 0 0 0 N 0

 
 
 
 
 
 
 −
 
 







      





. 

Thus, by using the matrix form (9) and (10), we can write the first derivative of the matrix form 
(7) 

𝑦𝑦𝑁𝑁′ (𝑥𝑥) = 𝐁𝐁′(𝑥𝑥)𝐀𝐀 = 𝑿𝑿(𝑥𝑥)𝐌𝐌𝑫𝑫 (11) 

and we can write the second derivative of the matrix form (7)  

𝑦𝑦𝑁𝑁′′(𝑥𝑥) = 𝐁𝐁′′(𝑥𝑥)𝐀𝐀 = 𝑿𝑿(𝑥𝑥)𝐌𝐌2𝑫𝑫𝐀𝐀 (12) 
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Thirdly, by substituting the matrix relations (7), (8), (11) and (12) in the Equation (1), we get 
the matrix equation  

𝑿𝑿(𝑥𝑥)𝐌𝐌2𝑫𝑫𝐀𝐀 +
𝛼𝛼
𝑥𝑥

 𝑿𝑿(𝑥𝑥)𝐌𝐌𝑫𝑫 + 𝑝𝑝(𝑥𝑥)𝐗𝐗(𝑥𝑥)𝐃𝐃𝐀𝐀 = 𝐠𝐠(𝑥𝑥). (13) 

Next, we define the collocation points as  

𝑥𝑥𝑖𝑖 = 𝑎𝑎 +
𝑏𝑏 − 𝑎𝑎
𝑁𝑁

𝑖𝑖, 𝑖𝑖 = 0,1, . . . ,𝑁𝑁 (14) 

and by writing these collocation points (14) instead of 𝑥𝑥 in the Equation (13), we obtain as 
follows: 

𝑿𝑿(𝑥𝑥𝑖𝑖)𝐌𝐌2𝑫𝑫𝐀𝐀 +
𝛼𝛼
𝑥𝑥𝑖𝑖

 𝑿𝑿(𝑥𝑥𝑖𝑖)𝐌𝐌𝑫𝑫 + 𝑝𝑝(𝑥𝑥𝑖𝑖)𝐗𝐗(𝑥𝑥𝑖𝑖)𝐃𝐃𝐀𝐀 = 𝐠𝐠(𝑥𝑥𝑖𝑖) (15) 

or  

{𝑿𝑿𝐌𝐌𝟐𝟐𝑫𝑫 + 𝛂𝛂𝑿𝑿𝐌𝐌𝑫𝑫 + 𝐏𝐏𝐗𝐗𝐃𝐃}𝐀𝐀 = 𝐆𝐆 (16) 

where 

𝑿𝑿 = [𝑿𝑿(𝑥𝑥0) 𝑿𝑿(𝑥𝑥1) ⋯ 𝑿𝑿(𝑥𝑥𝑁𝑁)]𝑻𝑻, 𝐆𝐆 = [𝑔𝑔(𝑥𝑥0) 𝑔𝑔(𝑥𝑥1) ⋯ 𝑔𝑔(𝑥𝑥𝑁𝑁)]𝑻𝑻, 

𝛂𝛂 =

⎣
⎢
⎢
⎢
⎢
⎡
𝛼𝛼
𝑥𝑥0
𝟎𝟎

𝟎𝟎
𝛼𝛼
𝑥𝑥1

⋯
⋯

𝟎𝟎
𝟎𝟎

⋮
𝟎𝟎

⋮
𝟎𝟎

⋱
⋯

⋮
𝛼𝛼
𝑥𝑥𝑁𝑁⎦
⎥
⎥
⎥
⎥
⎤

,𝐏𝐏 = �

𝑝𝑝(𝑥𝑥0)
𝟎𝟎

𝟎𝟎
𝑝𝑝(𝑥𝑥1)

⋯
⋯

𝟎𝟎
𝟎𝟎

⋮
𝟎𝟎

⋮
𝟎𝟎

⋱
⋯

⋮
𝑝𝑝(𝑥𝑥𝑁𝑁)

�.  

From here, we can write the matrix equation (16) also as  

 

𝐖𝐖𝐀𝐀 = 𝐆𝐆, 𝐖𝐖 = 𝑿𝑿𝐌𝐌𝟐𝟐𝑫𝑫 + 𝛂𝛂𝑿𝑿𝐌𝐌𝑫𝑫 + 𝐏𝐏𝐗𝐗𝐃𝐃;     or    [𝐖𝐖;𝐆𝐆]. (17) 

Then, we write the collocation points (14) in the conditions (2) with the help of (7)-(8), and we 
obtain the matrix equation corresponding to the conditions in the form  

��𝑎𝑎𝑗𝑗𝑘𝑘𝑿𝑿(0)𝐌𝐌𝒌𝒌𝑫𝑫 + 𝑏𝑏𝑗𝑗𝑘𝑘𝑿𝑿(𝑏𝑏)𝐌𝐌𝒌𝒌𝑫𝑫�
1

𝑘𝑘=0

𝐀𝐀 = �𝜆𝜆𝑗𝑗�, 𝑗𝑗 = 0,1 (18) 

or  

𝐔𝐔𝒋𝒋𝐀𝐀 = �𝜆𝜆𝑗𝑗�,  𝐔𝐔𝒋𝒋 = ��𝑎𝑎𝑗𝑗𝑘𝑘𝑿𝑿(0)𝐌𝐌𝒌𝒌𝑫𝑫 + 𝑏𝑏𝑗𝑗𝑘𝑘𝑿𝑿(𝑏𝑏)𝐌𝐌𝒌𝒌𝑫𝑫�
1

𝑘𝑘=0

;    𝑜𝑜𝑜𝑜   �𝐔𝐔𝒋𝒋; 𝜆𝜆𝑗𝑗�. (19) 
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So, the number of rows of the fundamental matrix system (17) is 𝑁𝑁 + 1 and the number of rows 
of the matrix form for the conditions (19) is 2. Hence, we write the 𝑁𝑁 − 1 rows of the system 
(17) and the rows of the conditions (19) in a single matrix in the form 

�𝐖𝐖;� 𝐆𝐆�� =

0,0 0,1 0,2 0,N 0

1,0 1,1 1,2 1,N 1

N 2,0 N 2,1 N 2,2 N 2,N N 2

0,0 0,1 0,2 0,N 0

1,0 1,1 1,2 1,N 1

w w w w ; g(x )
w w w w ; g(x )

w w w w ; g(x )
u u u u ;
u u u u ;

− − − − −

 
 
 
 
 
 
 λ
 λ  





      







 (20) 

Consequently, if 𝑜𝑜𝑎𝑎𝑛𝑛𝑘𝑘 𝐖𝐖� = 𝑜𝑜𝑎𝑎𝑛𝑛𝑘𝑘�𝐖𝐖;� 𝐆𝐆�� = 𝑁𝑁 + 1, it can be written 

𝐀𝐀 = (𝐖𝐖� )−𝟏𝟏𝐆𝐆.�  (21) 

and by solving this system, the coefficients matrix 𝐀𝐀 is found depending on Morgan-Voyce 
polynomials.Then, by substituting this matrix 𝐀𝐀 in the Equation (3), we determine Morgan-
Voyce polynomial solutions. Additionally, when, �𝐖𝐖� � = 0, if 𝑜𝑜𝑎𝑎𝑛𝑛𝑘𝑘 𝐖𝐖� = 𝑜𝑜𝑎𝑎𝑛𝑛𝑘𝑘�𝐖𝐖;� 𝐆𝐆�� < 𝑁𝑁 +
1, then we may find a particular solution. Otherwise if 𝑜𝑜𝑎𝑎𝑛𝑛𝑘𝑘 𝐖𝐖� ≠ 𝑜𝑜𝑎𝑎𝑛𝑛𝑘𝑘�𝐖𝐖;� 𝐆𝐆��, then we can’t 
find a solution. 

 

3. RESIDUAL CORRECTION AND ERROR ESTIMATION 

In this section, we will construct an error estimation method which depends on the residual 
error function. Also, we will develop Morgan-Voyce polynomial solutions with the help of this 
function. With 𝑦𝑦𝑁𝑁(𝑥𝑥) is the Morgan-Voyce polynomial solution of the problem (1)-(2), let's 
deal with the residual function as 

𝑅𝑅𝑁𝑁(𝑥𝑥) = 𝐿𝐿[𝑦𝑦𝑁𝑁(𝑥𝑥)] − 𝑔𝑔(𝑥𝑥) (22) 

Then, we can write  

⎩
⎪
⎨

⎪
⎧𝐿𝐿[𝑦𝑦𝑁𝑁(𝑥𝑥)] = 𝑦𝑦𝑁𝑁

(2)(𝑥𝑥) +
𝛼𝛼
𝑥𝑥
𝑦𝑦𝑁𝑁

(1)(𝑥𝑥) + 𝑝𝑝(𝑥𝑥)𝑦𝑦𝑁𝑁(𝑥𝑥) = 𝑔𝑔(𝑥𝑥) + 𝑅𝑅𝑁𝑁(𝑥𝑥),

��𝑎𝑎𝑗𝑗𝑘𝑘𝑦𝑦𝑁𝑁
(𝑘𝑘)(0) + 𝑏𝑏𝑗𝑗𝑘𝑘𝑦𝑦𝑁𝑁

(𝑘𝑘)(𝑏𝑏)� = 𝜆𝜆𝑗𝑗 , 𝑗𝑗 = 0,1.
1

𝑘𝑘=0

 (23) 

Thus, we can constitute the error problem with the help of (1)-(2)-(22) as  
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�

𝐿𝐿[𝑒𝑒𝑁𝑁(𝑥𝑥)] = 𝐿𝐿[𝑦𝑦(𝑥𝑥)] − 𝐿𝐿[𝑦𝑦𝑁𝑁(𝑥𝑥)] = −𝑅𝑅𝑁𝑁(𝑥𝑥)

��𝑎𝑎𝑗𝑗𝑘𝑘𝑒𝑒𝑁𝑁
(𝑘𝑘)(0) + 𝑏𝑏𝑗𝑗𝑘𝑘𝑒𝑒𝑁𝑁

(𝑘𝑘)(𝑏𝑏)� = 0, 𝑗𝑗 = 0,1.
1

𝑘𝑘=0

 (24) 

or  

⎩
⎪
⎨

⎪
⎧ 𝑒𝑒𝑁𝑁

(2)(𝑥𝑥) +
𝛼𝛼
𝑥𝑥
𝑒𝑒𝑁𝑁

(1)(𝑥𝑥) + 𝑝𝑝(𝑥𝑥)𝑒𝑒𝑁𝑁(𝑥𝑥) = −𝑅𝑅𝑁𝑁(𝑥𝑥),

��𝑎𝑎𝑗𝑗𝑘𝑘𝑒𝑒𝑁𝑁
(𝑘𝑘)(0) + 𝑏𝑏𝑗𝑗𝑘𝑘𝑒𝑒𝑁𝑁

(𝑘𝑘)(𝑏𝑏)� = 0, 𝑗𝑗 = 0,1.
1

𝑘𝑘=0

 (25) 

Here, we can define the actual error function 𝑒𝑒𝑁𝑁(𝑥𝑥) in the form 

𝑒𝑒𝑁𝑁(𝑥𝑥) = 𝑦𝑦(𝑥𝑥) − 𝑦𝑦𝑁𝑁(𝑥𝑥). (26) 

Hence, 𝑒𝑒𝑁𝑁,𝑀𝑀(𝑥𝑥) is the estimated error function and we use this function when the exact solution 
of the problem (1)-(2) is unknown. On the other hand, we solve the problem (24) by using the 
method in Section 2 in the form 

𝑒𝑒𝑁𝑁,𝑀𝑀(𝑥𝑥) = �𝑎𝑎𝑛𝑛∗  𝐵𝐵𝑛𝑛(𝑥𝑥)
𝑀𝑀

𝑛𝑛=0

. (27) 

Also, we define the improved approximate solution as 𝑦𝑦𝑁𝑁,𝑀𝑀(𝑥𝑥) = 𝑦𝑦𝑁𝑁(𝑥𝑥) + 𝑒𝑒𝑁𝑁,𝑀𝑀(𝑥𝑥) and we 
calculate the error of this improved approximate solution as  

𝐸𝐸𝑁𝑁,𝑀𝑀(𝑥𝑥) = �𝑦𝑦(𝑥𝑥) − 𝑦𝑦𝑁𝑁,𝑀𝑀(𝑥𝑥)�. (28) 

4. APPLICATIONS OF THE METHOD 

In this section, we will apply the methods discussed in Sections 2 and 3 on 2 examples and 
show the results in tables and graphs. We will also make comparisons with the results of other 
methods. Matlab is used for all calculations. 

Example 4.1.  Firstly, we deal with the Lane-Emden problem 

�𝑦𝑦
′′(𝑥𝑥) +

1
𝑥𝑥
𝑦𝑦′(𝑥𝑥) = �

8
8 − 𝑥𝑥2�

2

𝑦𝑦(1) = 0, 𝑦𝑦′(0) = 0
, 0 ≤ 𝑥𝑥 ≤ 1 (29) 

Here, the exact solution of the problem (29) is 𝑦𝑦(𝑥𝑥) = 2 𝑙𝑙𝑜𝑜𝑔𝑔 � 7
8−𝑥𝑥2

� , 𝛼𝛼 = 1, 𝑃𝑃 = 0 and 

𝑔𝑔(𝑥𝑥) = � 8
8−𝑥𝑥2

�
2

. By applying the method in Section 2 for N = 4, we write the approximate 

solution as 
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𝑦𝑦4(𝑥𝑥) = �𝑎𝑎𝑛𝑛 𝐵𝐵𝑛𝑛(𝑥𝑥)
4

𝑛𝑛=0

 (30) 

and we calculate the set of collocation points (14) for 𝛼𝛼 = 0.001 and 𝑏𝑏 = 1 as  

�𝑥𝑥0 =
1

1000
, 𝑥𝑥1 =

418
1667

, 𝑥𝑥2 =
501

1001 
, 𝑥𝑥3 =

751
1001 

,  𝑥𝑥4 = 1� (31) 

Hence, the fundamental matrix equation is  

𝐖𝐖𝐀𝐀 = 𝐆𝐆. (32) 

or  

W

0 1000 4004 10024009 / 1000 1255254501/ 62500
0 4000 / 1003 20012 / 1003 265342081/ 4012000 183369189027 / 1003000000
0 2000 / 1001 12004 / 1001 97066009 / 2002000 41042012001/ 250250000
0 4000 / 3001 28004 / 3001 529150009 / 12004000 52121

= G  
 

1
1469 / 1446

, 146 / 137
9027001/ 3001000000 1451/ 1254

0 1 8 43 192 64 / 49

   
   
   
   =
   
   
      

 (33) 

and for conditions, we have 

U 1 3 8 21 55 0
,

0 1 4 10 20 0
   

= =   
   

λ  (34) 

Then, we write the second row of the matrix 𝐖𝐖 and the matrix 𝐔𝐔 in a single matrix as  

 W G

0 1000 4004 10024009 / 1000 1255254501/ 62500 1
0 4000 / 1003 20012 / 1003 265342081/ 4012000 183369189027 / 1003000000 1469 / 1446

,0 2000 / 1001 12004 / 1001 97066009 / 2002000 41042012001/ 250250000
1 3 8 21 55
0 1 4 10 20

 
 
 
 = =
 
 
  

 146 / 137
0
0

 
 
 
 
 
 
  

 (35) 

Hence, we solve the system �𝐖𝐖;� 𝐆𝐆�� in Matlab and so we obtain the matrix of coefficients 𝐀𝐀 as  

TA     1392 817 973 534 1435 2017 146 1071 100 5891=   / - / / - / / .  (36) 

Thus, the Morgan-Voyce polynomial solution is 

𝑦𝑦4(𝑥𝑥) = 0.01697503613758𝑥𝑥4 − 5.209000391975185𝑒𝑒 − 04𝑥𝑥3  
+ 0.250001166624955𝑥𝑥2  − 0.266455302723344 

(37) 

And the actual error function becomes  
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𝑒𝑒4(𝑥𝑥) = 0.00950388237888242𝑥𝑥3 + 0.249978678764659𝑥𝑥2

+ 4.33680868994202𝑒𝑒 − 19𝑥𝑥 − 0.259482561143542 

− 2 𝑙𝑙𝑜𝑜𝑔𝑔 �
7

8 − 𝑥𝑥2�
. 

(38) 

Now, we constitute the error problem 

�
𝑒𝑒4

(2)(𝑥𝑥) +
1
𝑥𝑥
𝑒𝑒4

(1)(𝑥𝑥) = −𝑅𝑅4(𝑥𝑥),

𝑒𝑒4
(1)(0) = 0, 𝑒𝑒4(1) = 0

 (39) 

where 

𝑅𝑅4(𝑥𝑥) = 𝑦𝑦4
(2)(𝑥𝑥) +

1
𝑥𝑥
𝑦𝑦4

(1)(𝑥𝑥) − �
8

8 − 𝑥𝑥2�
2

. (40) 

Then, by applying the method in Section 3, we solve the error problem (39) for 𝑀𝑀 = 6 and so 
we can obtain the estimated error function, the improved approximate solution and the 
improved error function. The exact solution of the system (29), Bessel polynomial solution, 
Morgan-Voyce polynomial solution, improved Bessel polynomial solution and improved 
Morgan-Voyce polynomial solution are given in Table 1. The actual error function of the 
system (29), the estimated error function and the improved error function are given for 𝑁𝑁 =
7 and 𝑀𝑀 = 10  in Table 2 and Figure 1 at different points for the Bessel and Morgan-Voyce 
methods. In Table 3, the actual error functions of the system (29) are given for different 𝑁𝑁 
values. From all these results, it can be said that the higher the value 𝑁𝑁, the better results are 
obtained and the method is very effective. In addition, although there is not much difference 
between the actual error results compared to the comparison made with the Bessel method 
(Yüzbaşı & Sezer, 2013), when we look at the improved error results, it is seen that the 
presented method is more effective. 

 

Tablo 1 The exact solution, the approximate solution and the improved approximate solution 
of the system (29)  

𝒙𝒙𝒊𝒊 Exact Solution Bessel polynomial solution 
(Yüzbaşı & Sezer, 2013) 

Morgan-Voyce 
polynomial solution 

 𝒚𝒚(𝒙𝒙𝒊𝒊) 𝒚𝒚𝟕𝟕(𝒙𝒙𝒊𝒊) 𝒚𝒚𝟕𝟕(𝒙𝒙𝒊𝒊) 

0 −0.26706278524904525 −0.26706118400745205 -0.26705976695773307 

0.2 -0.25703770160195668 −0.25703613506200951 -0.25703467401943167 
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0.4 -0.22665737061400635 −0.22665581293982964 -0.22665434134952904 

0.6 -0.17497490824623164 −0.17497335588303395 -0.17497187877953834 

0.8 -0.10029956737094313 −0.10029801545556499 -0.10029654003433037 

1 0 −0.16197980456933e−15 0 

 Exact Solution Improved Bessel 
polynomial solution 
(Yüzbaşı & Sezer, 2013) 

Improved Morgan-Voyce 
polynomial solution 

 𝒚𝒚(𝒙𝒙𝒊𝒊) 𝒚𝒚𝟕𝟕,𝟏𝟏𝟎𝟎(𝒙𝒙𝒊𝒊) 𝒚𝒚𝟕𝟕,𝟏𝟏𝟎𝟎(𝒙𝒙𝒊𝒊) 

0 −0.26706278524904525 −0.26706277509905801 -0.26706277509905738 

0.2 -0.25703770160195668 −0.25703769146757538 -0.25703769146757476 

0.4 -0.22665737061400635 −0.22665736048447666 -0.22665736048447604 

0.6 -0.17497490824623164 −0.17497489811938738 -0.17497489811938671 

0.8 -0.10029956737094313 −0.10029955723627511 -0.1002995572362745 

1 0 −0.14493072540699e−15 0 

 

Tablo 2 The actual errors, the estimated errors and improved errors of the system (29) 

𝒙𝒙𝒊𝒊 The actual errors for 
PM 

The estimated errors for 
PM 

The improved errors for 
PM 

 𝒆𝒆𝟕𝟕(𝒙𝒙𝒊𝒊) 𝒆𝒆𝟕𝟕,𝟏𝟏𝟎𝟎(𝒙𝒙𝒊𝒊) 𝑬𝑬𝟕𝟕,𝟏𝟏𝟎𝟎(𝒙𝒙𝒊𝒊) 

0 3.0183e-06 3.0081e-06 1.0150e-08 

0.2 3.0276e-06 3.0174e-06 1.0134e-08 

0.4 3.0293e-06 3.0191e-06 1.0130e-08 

0.6 3.0295e-06 3.0193e-06 1.0127e-08 

0.8 3.0273e-06 3.0172e-06 1.0135e-08 
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1 0 0 0 

 The actual errors for 
(Yüzbaşı & Sezer, 
2013) 

The estimated errors for 
(Yüzbaşı & Sezer, 2013) 

The improved errors for 
(Yüzbaşı & Sezer, 2013) 

 𝒆𝒆𝟕𝟕(𝒙𝒙𝒊𝒊) 𝒆𝒆𝟕𝟕,𝟏𝟏𝟎𝟎(𝒙𝒙𝒊𝒊) 𝑬𝑬𝟕𝟕,𝟏𝟏𝟎𝟎(𝒙𝒙𝒊𝒊) 

0 1.6012e−006 1.5911e−006 1.0150e−008 

0.2 1.5665e−006 1.5564e−006 1.0134e−008 

0.4 1.5577e−006 1.5475e−006 1.0130e−008 

0.6 1.5524e−006 1.5422e−006 1.0127e−008 

0.8 1.5519e−006 1.5418e−006 1.0135e−008 

1 1.6198e−016 8.3009e−020 1.4494e−016 

 

Tablo 3 The actual errors of the system (29) 

𝒙𝒙𝒊𝒊 The actual errors for 
PM 

The actual errors for 
PM 

The actual errors for PM 

 𝒆𝒆𝟒𝟒(𝒙𝒙𝒊𝒊) 𝒆𝒆𝟕𝟕(𝒙𝒙𝒊𝒊) 𝒆𝒆𝟏𝟏𝟐𝟐(𝒙𝒙𝒊𝒊) 

0 6.0748e-04 3.0183e-06 2.5208e-10 

0.2 6.0544e-04 3.0276e-06 2.5178e-10 

0.4 6.0348e-04 3.0293e-06 2.5168e-10 

0.6 6.0748e-04 3.0295e-06 2.5162e-10 

0.8 5.3129e-04 3.0273e-06 2.5158e-10 

1 0 0 0 
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Figure 1 The actual error, the estimated error and improved error of the system (29) 

 

Example 4.2.  Secondly, we deal with the Lane-Emden problem 

�𝑦𝑦
′′(𝑥𝑥) +

2
𝑥𝑥
𝑦𝑦′(𝑥𝑥) + 𝑦𝑦(𝑥𝑥) = 6 + 12𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3

𝑦𝑦(0) = 0, 𝑦𝑦′(0) = 0
, 0 ≤ 𝑥𝑥 ≤ 1 (41) 

Here, the exact solution of the problem (29) is 𝑦𝑦(𝑥𝑥) = 𝑥𝑥2 + 𝑥𝑥3,  𝛼𝛼 = 2, 𝑃𝑃 = 1 and 𝑔𝑔(𝑥𝑥) =
6 + 12𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3. The actual error, the estimated error and the improved error of the system 
(41) are given for 𝑁𝑁 = 5 and 𝑀𝑀 = 8  in Table 4 and Figure 2. From all these results, it can be 
said that the estimated errors very close to actual errors and improved errors give better results 
than actual errors and according to the method discussed in Section 3 the method is effective. 
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Figure 2 The absolute error of the system (41) 

 

Tablo 4 The actual errors, the estimated errors and improved errors of the system (41) 

𝒙𝒙𝒊𝒊 The actual errors for 
PM 

The estimated errors 
for PM 

The improved errors for 
PM 

 𝒆𝒆𝟓𝟓(𝒙𝒙𝒊𝒊) 𝒆𝒆𝟓𝟓,𝟖𝟖(𝒙𝒙𝒊𝒊) 𝑬𝑬𝟓𝟓,𝟖𝟖(𝒙𝒙𝒊𝒊) 

0 0 0 0 

0.2 4.58717222697e-18 4.58717222697e-18 1.45212328405e-34 

0.4 1.15388333652e-17 1.15388333652e-17 2.372568381e-34 

0.6 8.97752291734e-18 8.97752291734e-18 1.91800258528e-34 

0.8 5.9154975339e-17 5.9154975339e-17 1.96795990081e-33 

1 3.9388474237e-16 3.9388474237e-16 4.91666451354e-32 
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5. CONCLUSIONS 

In this study, the Morgan-Voyce collocation method was applied to numerically solve the linear 
Lane-Emden equations. For this purpose, the problem (1) - (2) is transformed into an algebraic 
equation system containing the unknown coefficients of Morgan-Voyce series. By solving this 
system, Morgan-Voyce coefficients were determined and thus approximate solutions were 
obtained according to Morgan-Voyce polynomials. The method is applied in Section 4. Thus, 
it is understood whether the presented method is effective or not. When the results are 
examined, it can be said that the method is very effective. After making the necessary 
arrangements, the method can be developed for the nonlinear Lane – Emden equations. 
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ÖZET 

Bu çalışmada, lineer Fredholm integro-diferansiyel denklem sistemlerini sayısal olarak çözmek 
için etkili bir algoritma kurulacaktır. Lineer Fredholm integro-diferansiyel denklem 
sistemlerinde çözümleri sayısal olarak ararız çünkü bazen tam çözüm yoktur veya tam çözümü 
elde etmek zordur. Bu çalışmanın amacı, lineer Fredholm integro-diferansiyel denklem 
sistemlerinin Pell-Lucas polinomlarına bağlı olarak yaklaşık çözümlerini bulmaktır. Yöntem, 
yaklaşık çözümün matris temsillerini, bu yaklaşık çözümlerin türevlerinin matris temsillerini 
ve bu yaklaşık çözümlerin integrallerinin matris temsillerini içerir, ki bu yaklaşık çözümler de 
Pell-Lucas serilerine bağlıdır. Bu yönteme göre verilen problem, Pell-Lucas katsayılarını içeren 
cebirsel bir sisteme indirgenir. Bu sistem çözülerek Pell-Lucas katsayıları elde edilir. Bu 
katsayılar çözüm formunda yazılır ve yaklaşık çözüm Pell-Lucas polinomlarına bağlı olarak 
bulunur. Son olarak yöntem uygulanır. Sonuçlar tablolar ve grafiklerde gösterilir. Buna göre, 
mevcut yöntemle elde edilen yaklaşık çözüm, tam çözüme çok yakındır. Sonuçlar incelenerek 
yöntemin başarılı olduğu söylenebilir. Ayrıca, sonuçlar Matlab programında yazılan kodlar ile 
elde edilmiştir. 

Anahtar Kelimeler:  Fredholm İntegro-Diferansiyel Denklemleri, Kollokasyon Noktaları, 
Kollokasyon Yöntemi, Pell-Lucas Polinomları 

 

ABSTRACT 

In this study, an effective algorithm will be established to numerically solve the systems of 
linear Fredholm integro-differential equations. In the systems of linear Fredholm integro-
differential equation, we look for solutions numerically because sometimes there is no exact 
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solution or it is difficult to get the exact solution. The aim of this study is to find the approximate 
solutions of the systems of linear Fredholm integro-differential equation depending on the Pell-
Lucas polynomials. The method includes the matrix representations of approximate solution, 
the matrix representations of the derivatives and the matrix representations of the integrals of 
this approximate solution, which depend on the Pell-Lucas series. According to this method, 
the given problem is reduced to an algebraic system containing Pell-Lucas coefficients. Pell-
Lucas coefficients are obtained, by solving this system. This coefficients are written in the 
solution form and the approximate solution is found depending on the Pell-Lucas polynomials. 
Finally, the method is applied. The results are shown in tables and graphs. Accordingly, the 
approximate solution obtained by the present method is very close to the exact solution. By 
examining the results, it can be said that the method is successful. Also, results are obtained 
with the codes written in the Matlab program. 

Keywords: Collocation Method, Collocation Points, Fredholm Integro-Differential Equations, 
Pell-Lucas Polynomials 

 

1. INTRODUCTION 

Lately, it is very common in science and engineering to model problems through differential 
equations and systems of differential equations (Biazar, Tango, Babolian, & Islam, 2003), 
(Piqueira & Araujo, 2009), (Lutambi, Penny , Smith, & Chitnis, 2013), (Momoniat & Harley, 
2011), (Sprott, 2005), (Ghadikolaei, Yassari, Sadeghi , Hosseinzadeh, & Ganji, 2017), 
(Dogonchi, Hatami, Hosseinzadeh, & Domairry, 2015), (Ghadikolaei, Hosseinzadeh, Yassari, 
Sadeghi, & Ganji, 2017), (Atouei, ve diğerleri, 2015), (Hatami, Hosseinzadeh, Domairry, & 
Behnamfar, 2014). Since it is not always possible to calculate analytical solutions of these 
equations or systems of equations, many numerical methods have been developed (Ghadikolaei, 
Hosseinzadeh, Yassari, Sadeghi, & Ganji, 2017), (Atouei, ve diğerleri, 2015), (Hatami, 
Hosseinzadeh, Domairry, & Behnamfar, 2014), ( Akyüz & Sezer, 2003), (Gökmen & Sezer, 
2013), (Pandey & Kumar, 2012), (Khanian & Davari, 2011), (Öztürk, 2018), (Rabbani & Zarali, 
2012), (Akyüz-Daşcıoğlu & Sezer, 2005), (Yalçınbaş, Sezer, & Sorkun, 2009), (Dehghan & 
Saadatmandi, Chebyshev finite difference method for Fredholm integro-differential equation., 
2008), (Kurt & Sezer, 2008), (Maleknejad, Basirat, & Hashemizadeh, 2012), (Mirzaee & 
Hoseini, 2014), (Yüzbaşı, Şahin, & Sezer, 2011) , (Türkyılmazoğlu, 2014). In addition, there 
are numerical studies using Pell-Lucas polynomials (Yüzbaşı & Yıldırım, 2020), (Yüzbaşı & 
Yıldırım, 2020). In this paper, we will study the system of m-order linear Fredholm integral 
equation 
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��𝑃𝑃𝑖𝑖,𝑗𝑗𝑛𝑛 (𝑥𝑥) 𝑦𝑦𝑗𝑗
(𝑛𝑛)(𝑥𝑥)

𝑘𝑘

𝑗𝑗=1

𝑚𝑚

𝑛𝑛=0

= 𝑔𝑔𝑖𝑖(𝑥𝑥) + � �𝐾𝐾𝑖𝑖,𝑗𝑗(𝑥𝑥, 𝑡𝑡)𝑦𝑦𝑗𝑗(𝑡𝑡) 𝑑𝑑𝑡𝑡, 𝑖𝑖 = 1, 2, . . . , 𝑘𝑘, 0 ≤ 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
𝑘𝑘

𝑗𝑗=1

𝑏𝑏

𝑎𝑎
 

 
(42) 

 

with conditions  

�(𝑎𝑎𝑖𝑖,𝑗𝑗𝑛𝑛 𝑦𝑦𝑛𝑛
(𝑗𝑗)(𝑎𝑎) + 𝑏𝑏𝑖𝑖,𝑗𝑗𝑛𝑛 𝑦𝑦𝑛𝑛

(𝑗𝑗)(𝑏𝑏)) = 𝜆𝜆𝑛𝑛,𝑖𝑖 , 𝑖𝑖 = 0,1, . . . ,𝑚𝑚 − 1,   𝑛𝑛 = 1,2, . . . ,𝑘𝑘
𝑚𝑚

𝑗𝑗=0

 
 
(43) 

 

In this study, we will develop a method to obtain the approximate solutions of the problem  (1)- 
(2) by using matrix representation of the Pell-Lucas polynomials. Here, we will look for 
approximate solutions as 

𝑦𝑦𝑛𝑛
𝑗𝑗(𝑥𝑥) = �𝑎𝑎𝑟𝑟

𝑗𝑗
𝑁𝑁

𝑟𝑟=0

𝑄𝑄𝑛𝑛(𝑥𝑥) 

 
(44) 

 

The definitions of the parameters in the statements (1)-(3) are given in the Table 1. 

Tablo 5 Some expressions in (1)-(2)-(3) 

Parameter Definition 

𝑎𝑎𝑖𝑖,𝑗𝑗𝑛𝑛 , 𝜆𝜆𝑛𝑛,𝑖𝑖 real or complex constants 

𝑦𝑦𝑗𝑗
(𝑛𝑛)(𝑥𝑥) n. order derivative 

𝑦𝑦𝑗𝑗
(0)(𝑥𝑥) = 𝑦𝑦𝑗𝑗(𝑥𝑥) the approximate solution 

𝑃𝑃𝑖𝑖,𝑗𝑗𝑛𝑛 (𝑥𝑥),𝑔𝑔𝑖𝑖(𝑥𝑥),𝐾𝐾𝑖𝑖,𝑗𝑗(𝑥𝑥, 𝑡𝑡) analytical functions 

𝐾𝐾𝑖𝑖,𝑗𝑗(𝑥𝑥, 𝑡𝑡) extensible function to Maclaurin series 

𝑄𝑄𝑛𝑛(𝑥𝑥) the Pell-Lucas polynomials 

𝑎𝑎𝑟𝑟
𝑗𝑗 unknown Pell-Lucas coefficients 

𝑁𝑁 chosen any positive integer  
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2. PELL-LUCAS POLYNOMIALS 

The Pell-Lucas polynomials 𝑄𝑄𝑛𝑛(𝑥𝑥) is (Horadam & Mahon Bro, 1985) (Horadam, Swita, & 
Filipponi, 1994) 

𝑄𝑄𝑛𝑛(𝑥𝑥) = � 2𝑛𝑛−2𝑘𝑘
𝑛𝑛

𝑛𝑛 − 𝑘𝑘 �
𝑛𝑛 − 𝑘𝑘
𝑘𝑘 � 𝑥𝑥𝑛𝑛−2𝑘𝑘.

⌈𝑛𝑛/2⌉

𝑘𝑘=0

 
 
(45) 

 

And the recurrence relationship of Pell-Lucas polynomials 𝑄𝑄𝑛𝑛(𝑥𝑥) is (Horadam & Mahon Bro, 
1985) (Horadam, Swita, & Filipponi, 1994) 

𝑄𝑄𝑛𝑛(𝑥𝑥) = 2𝑥𝑥𝑄𝑄𝑛𝑛−1(𝑥𝑥) + 𝑄𝑄𝑛𝑛−2(𝑥𝑥),𝑛𝑛 ≥ 2 

where the first two Pell-Lucas polynomials are 𝑄𝑄0(𝑥𝑥) = 2 and 𝑄𝑄1(𝑥𝑥) = 2𝑥𝑥. 

Additionally, the derivative relation of Pell-Lucas polynomials 𝑄𝑄𝑛𝑛(𝑥𝑥)  is  

𝑄𝑄𝑛𝑛′ (𝑥𝑥) = 2𝑥𝑥𝑄𝑄𝑛𝑛−1′ (𝑥𝑥) + 𝑄𝑄𝑛𝑛−2′ (𝑥𝑥) + 2𝑄𝑄𝑛𝑛−1(𝑥𝑥),𝑛𝑛 ≥ 2. 
       
(4
6) 

We can be approached to the given function 𝑦𝑦𝑛𝑛
𝑗𝑗(𝑥𝑥) in the form  

𝑦𝑦𝑛𝑛
𝑗𝑗(𝑥𝑥) = �𝑎𝑎𝑟𝑟

𝑗𝑗
𝑁𝑁

𝑟𝑟=0

𝑄𝑄𝑛𝑛(𝑥𝑥) 
(47) 

 

where 𝑎𝑎𝑟𝑟
𝑗𝑗 is in form 

𝑎𝑎𝑟𝑟
𝑗𝑗 = 〈𝑦𝑦𝑛𝑛

𝑗𝑗(𝑥𝑥),𝑄𝑄𝑛𝑛(𝑥𝑥)〉 = �𝑦𝑦𝑛𝑛
𝑗𝑗(𝑥𝑥)𝑄𝑄𝑛𝑛(𝑥𝑥) 𝑑𝑑𝑥𝑥.

1

0

 
(48) 

 

3. FUNDAMENTAL MATRIX RELATIONSHIPS 

We can write the matrix representation of the Equation (6) as 

𝑦𝑦𝑁𝑁
𝑗𝑗(𝑥𝑥) = 𝐐𝐐(𝑥𝑥)𝐀𝐀𝑗𝑗. 

(49) 

 

Here, 𝐐𝐐(𝑥𝑥) and 𝐀𝐀𝑗𝑗 are  

𝐐𝐐(𝑥𝑥) = [𝑄𝑄0(𝑥𝑥) 𝑄𝑄1(𝑥𝑥) ⋯ 𝑄𝑄𝑁𝑁(𝑥𝑥)],𝐀𝐀𝑗𝑗 =
Tj j j

0 1 Na a a   . 
 

The Pell-Lucas polynomials 𝑄𝑄𝑛𝑛(𝑥𝑥) can be expressed 
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𝐐𝐐(𝑥𝑥) = 𝑿𝑿(𝑥𝑥)𝐃𝐃𝑇𝑇 (50) 

where 𝐗𝐗(𝑥𝑥) = [1 𝑥𝑥 ⋯ 𝑥𝑥𝑁𝑁] and if 𝑁𝑁 is odd  

 

D

 
 
 

   
   
   

   
   
   

     =
     
     

     
     
     

+



+ −


1

0 2

1 3

0 2 4

1 3 5

1

2 0 0 0 0 0 0
110 2 0 0 0 0 0

1 0
1 22 22 0 2 0 0 0 0

1 21 0
1 33 30 2 0 2 0 0 0

2 31 0
2 3 44 4 42 0 2 0 2 0 0

2 3 42 1 0
3 4 55 5 50 2 0 2 0 2 0

3 4 52 1 0

N 1
N 20 2 N 1 N 1
2 2













       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ +     
      
      + +− −                  

3 5 N

N 3 N 5
NN N N2 20 2 0 2 2N 3 N 5 NN 3 N 5 0

2 22 2



 

 

and if 𝑁𝑁 is even 

D

 
 
 

   
   
   

   
   
   

     =
     
     

     
     
     

 
 
 
 
 
 

1

0 2

1 3

0 2 4

1 3 5

0

2 0 0 0 0 0 0
110 2 0 0 0 0 0

1 0
1 22 22 0 2 0 0 0 0

1 21 0
1 33 30 2 0 2 0 0 0

2 31 0
2 3 44 4 42 0 2 0 2 0 0

2 3 42 1 0
3 4 55 5 50 2 0 2 0 2 0

3 4 52 1 0

N
N 22 N N
2 2













       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ +    
     
     + +− −              

2 4 N

N 2 N 4
NN N N2 20 2 0 2 0 2N 2 N 2 NN 2 N 4 0

2 22 2



 

 

Thus, the matrix representation of the relationship between the Equation (8) and the derivatives 
of the Equation (8) can be expressed as  
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(𝑦𝑦𝑁𝑁
𝑗𝑗(𝑥𝑥))(𝑛𝑛) = 𝐐𝐐(𝑛𝑛)(𝑥𝑥)𝐀𝐀𝑗𝑗 (51) 

Also by using the expression (9), the matrix representation of the expression (𝐐𝐐)(𝑛𝑛)(𝑥𝑥) is 

𝐐𝐐(𝑛𝑛)(𝑥𝑥)  = 𝐗𝐗(𝑛𝑛)(𝑥𝑥)𝐃𝐃𝑇𝑇 (52) 

and here the 𝑛𝑛 − 𝑡𝑡ℎ derivative of the expression 𝐗𝐗(𝑥𝑥) is  

𝐗𝐗(𝑛𝑛)(𝑥𝑥) =  𝐗𝐗(𝑥𝑥)(𝐁𝐁𝑇𝑇)𝑛𝑛 (53) 

where 𝐁𝐁 is denoted as  

𝐁𝐁 =

0 0 0 0 0
1 0 0 0 0
0 2 0 0 0

0 0 0 N 0

 
 
 
 
 
 
  







     



. 

When the expression (12) is written in the expression (11), it becomes  

𝐐𝐐(𝑛𝑛)(𝑥𝑥)  = 𝐗𝐗(𝑥𝑥)(𝐁𝐁𝑇𝑇)𝑛𝑛𝐃𝐃𝑇𝑇 (54) 

And when the expression (13) is written in the expression (10), it becomes  

(𝑦𝑦𝑁𝑁
𝑗𝑗(𝑥𝑥))(𝑛𝑛) = 𝐗𝐗(𝑥𝑥)(𝐁𝐁𝑇𝑇)𝑛𝑛𝐃𝐃𝑇𝑇𝐀𝐀𝑗𝑗 . (55) 

Then, for the Fredholm part in the system  (1), we can write the kernel function 𝐾𝐾𝑖𝑖,𝑗𝑗(𝑥𝑥, 𝑡𝑡) as 

𝐾𝐾𝑖𝑖,𝑗𝑗(𝑥𝑥, 𝑡𝑡) = � �  𝑡𝑡𝑘𝑘𝑖𝑖,𝑗𝑗
𝑚𝑚,𝑛𝑛 𝑥𝑥𝑚𝑚𝑡𝑡𝑛𝑛 

𝑁𝑁

𝑛𝑛=0

𝑁𝑁

𝑚𝑚=0

 (56) 

and 

𝐾𝐾𝑖𝑖,𝑗𝑗(𝑥𝑥, 𝑡𝑡) = � �  𝑞𝑞𝑘𝑘𝑖𝑖,𝑗𝑗
𝑚𝑚,𝑛𝑛 𝑄𝑄𝑚𝑚(𝑥𝑥) 𝑄𝑄𝑛𝑛(𝑡𝑡) 

𝑁𝑁

𝑛𝑛=0

𝑁𝑁

𝑚𝑚=0

 (57) 

where 

 𝑡𝑡𝑘𝑘𝑖𝑖,𝑗𝑗
𝑚𝑚,𝑛𝑛 =

1
𝑚𝑚!𝑛𝑛!

𝜕𝜕𝑚𝑚+𝑛𝑛𝐾𝐾(0,0)
𝜕𝜕𝑥𝑥𝑚𝑚𝜕𝜕𝑡𝑡𝑛𝑛

;  𝑚𝑚,𝑛𝑛 = 0,1, . . . ,𝑁𝑁;  𝑖𝑖 = 1,2, . . . ,𝑘𝑘. 

Thus, we can write the expression (15) and (16) in matrix form as  

𝐾𝐾𝑖𝑖,𝑗𝑗(𝑥𝑥, 𝑡𝑡) = 𝐗𝐗(𝑥𝑥)𝐊𝐊𝑖𝑖,𝑗𝑗
𝑡𝑡 𝐗𝐗𝑇𝑇(𝑡𝑡);  𝐊𝐊𝑖𝑖,𝑗𝑗

𝑡𝑡 = � 𝑡𝑡𝑘𝑘𝑖𝑖,𝑗𝑗
𝑚𝑚,𝑛𝑛� (58) 
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and 

𝐾𝐾𝑖𝑖,𝑗𝑗(𝑥𝑥, 𝑡𝑡) = 𝐐𝐐(𝑥𝑥)𝐊𝐊𝑖𝑖,𝑗𝑗
𝑞𝑞 𝐐𝐐𝑇𝑇(𝑡𝑡); 𝐊𝐊𝑖𝑖,𝑗𝑗

𝑞𝑞 = � 𝑞𝑞𝑘𝑘𝑖𝑖,𝑗𝑗
𝑚𝑚,𝑛𝑛�. (59) 

From the expressions (17) and (18), we gain the relation 

𝐊𝐊𝒊𝒊,𝒋𝒋
𝒕𝒕 = 𝐃𝐃𝑻𝑻𝐊𝐊𝒊𝒊,𝒋𝒋

𝒒𝒒 𝐃𝐃  or  𝐊𝐊𝒊𝒊,𝒋𝒋
𝒒𝒒 = (𝐃𝐃𝑻𝑻)−𝟏𝟏

 

 𝐊𝐊𝒊𝒊,𝒋𝒋
𝒕𝒕 𝐃𝐃−𝟏𝟏. (60) 

If, we substitute the expressions (8) and (19) into the expressions (1) for the Fredholm part, 
then it becomes  

𝐼𝐼(𝑥𝑥) = ���𝐐𝐐(𝑥𝑥)𝐊𝐊𝑖𝑖,𝑗𝑗
𝑞𝑞 𝐐𝐐𝑇𝑇(𝑡𝑡)𝑿𝑿(𝑡𝑡)𝐃𝐃𝑇𝑇

 

 𝐀𝐀𝑗𝑗  𝑑𝑑𝑡𝑡
𝑏𝑏

𝑎𝑎

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1

 (61) 

or 

𝐼𝐼(𝑥𝑥) = ��𝑿𝑿(𝑥𝑥)𝐃𝐃𝑇𝑇𝐊𝐊𝑖𝑖,𝑗𝑗
𝑞𝑞 𝐃𝐃��𝑿𝑿𝑇𝑇(𝑡𝑡)𝑿𝑿(𝑡𝑡)𝑑𝑑𝑡𝑡 

  
𝑏𝑏

𝑎𝑎

�𝐃𝐃𝑇𝑇𝐀𝐀𝑗𝑗

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1

. (62) 

Now, we substitute the expressions (19) into the expressions (21) and we gain 

𝐼𝐼(𝑥𝑥) = ��𝑿𝑿(𝑥𝑥)𝐊𝐊𝒊𝒊,𝒋𝒋
𝒕𝒕 𝐍𝐍𝐃𝐃𝑇𝑇𝐀𝐀𝑗𝑗

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1

. (63) 

where 

𝐍𝐍 = ��𝑿𝑿𝑇𝑇(𝑡𝑡)𝑿𝑿(𝑡𝑡)𝑑𝑑𝑡𝑡 
  

𝑏𝑏

𝑎𝑎

� = [𝒏𝒏𝒓𝒓𝒓𝒓];  𝒏𝒏𝒓𝒓𝒓𝒓 =
𝒃𝒃𝒓𝒓+𝒓𝒓+𝟏𝟏 − 𝒂𝒂𝒓𝒓+𝒓𝒓+𝟏𝟏

𝒓𝒓 + 𝒓𝒓 + 𝟏𝟏
;  𝒓𝒓, 𝒓𝒓 = 𝟎𝟎,𝟏𝟏, . . . ,𝑵𝑵. 

Finally, substitute the expression (14) and the expression (22) in the expression  (1) for 𝑖𝑖 =
1,2, . . . ,𝑘𝑘, it is obtained 

��𝑃𝑃𝑖𝑖,𝑗𝑗𝑛𝑛 (𝑥𝑥) 𝐗𝐗(𝑥𝑥)(𝐁𝐁𝑇𝑇)𝑛𝑛𝐃𝐃𝑇𝑇𝐀𝐀𝑗𝑗 = 𝑔𝑔𝑖𝑖(𝑥𝑥) + �𝑿𝑿(𝑥𝑥)𝐊𝐊𝒊𝒊,𝒋𝒋
𝒕𝒕 𝐍𝐍𝐃𝐃𝑇𝑇𝐀𝐀𝑗𝑗

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑗𝑗=1

𝑚𝑚

𝑛𝑛=0

. (64) 

4. THE OPERATIONAL MATRIX METHOD 

In this section, we will be developed a method to obtain approximate solutions of the system of 
the Equation  (1) under the conditions  (2). So, we give the expression 𝑔𝑔𝑖𝑖(𝑥𝑥) in the form 

𝑔𝑔𝑖𝑖(𝑥𝑥) ≈   𝐗𝐗(𝑥𝑥)𝐃𝐃𝑇𝑇𝐆𝐆𝑖𝑖𝑇𝑇 (65) 
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depending on the Pell-Lucas polynomials. Then, we write the expression (24) in the expression 
(23) for 𝑖𝑖 = 1,2, . . . ,𝑘𝑘, as 

��𝑃𝑃𝑖𝑖,𝑗𝑗𝑛𝑛 (𝑥𝑥) 𝐗𝐗(𝑥𝑥)(𝐁𝐁𝑇𝑇)𝑛𝑛𝐃𝐃𝑇𝑇𝐀𝐀𝑗𝑗 −�𝑿𝑿(𝑥𝑥)𝐊𝐊𝒊𝒊,𝒋𝒋
𝒕𝒕 𝐍𝐍𝐃𝐃𝑇𝑇𝐀𝐀𝑗𝑗

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑗𝑗=1

𝑚𝑚

𝑛𝑛=0

≈  𝐗𝐗(𝑥𝑥)𝐃𝐃𝑇𝑇𝐆𝐆𝑖𝑖𝑇𝑇 . (66) 

Now, we write the residual 𝑅𝑅𝑖𝑖(𝑥𝑥) for 𝑖𝑖 = 1,2, . . . , 𝑘𝑘, as 

𝑅𝑅𝑖𝑖(𝑥𝑥) ≈ ��𝑃𝑃𝑖𝑖,𝑗𝑗𝑛𝑛 (𝑥𝑥) 𝐗𝐗(𝑥𝑥)(𝐁𝐁𝑇𝑇)𝑛𝑛𝐃𝐃𝑇𝑇𝐀𝐀𝑗𝑗 −�𝑿𝑿(𝑥𝑥)𝐊𝐊𝒊𝒊,𝒋𝒋
𝒕𝒕 𝐍𝐍𝐃𝐃𝑇𝑇𝐀𝐀𝑗𝑗

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑗𝑗=1

𝑚𝑚

𝑛𝑛=0

−  𝐗𝐗(𝑥𝑥)𝐃𝐃𝑇𝑇𝐆𝐆𝑖𝑖𝑇𝑇 .    (67) 

Consequently, we use the Tau method and we convert the expression (27) to the m(N-
1) linear equations by applying 

 

〈𝑅𝑅𝑖𝑖(𝑥𝑥),𝑄𝑄𝑛𝑛(𝑥𝑥) 〉 = �𝑅𝑅𝑖𝑖(𝑥𝑥)𝑄𝑄𝑛𝑛(𝑥𝑥)  𝑑𝑑𝑥𝑥 = 0,   𝑛𝑛 = 0,1, . . . ,𝑁𝑁 − 2.
1

0

 (68) 

Similarly, we substitute the expressions (14) into the expressions (2) for 𝑛𝑛 = 1,2, . . . ,𝑘𝑘 and 𝑖𝑖 =
0,1, . . . ,𝑚𝑚 − 1 and we gain 

��𝑎𝑎𝑖𝑖,𝑗𝑗𝑛𝑛 𝐗𝐗(𝑎𝑎)(𝐁𝐁𝑇𝑇)𝑗𝑗𝐃𝐃𝑇𝑇𝐀𝐀𝑗𝑗 + 𝑏𝑏𝑖𝑖,𝑗𝑗𝑛𝑛 𝐗𝐗(𝑏𝑏)(𝐁𝐁𝑇𝑇)𝑗𝑗𝐃𝐃𝑇𝑇𝐀𝐀𝑗𝑗� = 𝜆𝜆𝑛𝑛,𝑖𝑖 .
𝑚𝑚−1

𝑗𝑗=0

 (69) 

The Equations (27) and (28) generate 𝑚𝑚(𝑁𝑁 + 1) sets of linear equations. By solving this system 

with the help of Matlab, the coefficient matrix 𝐀𝐀𝑗𝑗 and the solutions 𝑦𝑦𝑁𝑁
𝑗𝑗(𝑥𝑥) are obtained. 

5. NUMERICAL EXAMPLE 

In this section, we will apply the methods in Section 3 and Section 4. We have made the 
calculations for these applications in Matlab program. Thus, we will see that the method is 
effective and reliable. 

Example 5.1. We consider the system  

⎩
⎪
⎨

⎪
⎧ 𝑦𝑦1′′(𝑥𝑥) + 𝑥𝑥 𝑦𝑦1(𝑥𝑥) + 𝑥𝑥𝑦𝑦2(𝑥𝑥) = 2 + �(𝑦𝑦1(𝑡𝑡) + 𝑦𝑦2(𝑡𝑡)) 𝑑𝑑𝑡𝑡

1

−1

𝑦𝑦2′′(𝑥𝑥) + 2𝑥𝑥 𝑦𝑦2(𝑥𝑥) + 2𝑥𝑥𝑦𝑦1(𝑥𝑥) = −2 + �(2𝑦𝑦1(𝑡𝑡) + 2𝑦𝑦2(𝑡𝑡)) 𝑑𝑑𝑡𝑡
1

−1

 
(70) 

 

and the conditions 
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𝑦𝑦1(0) = 𝑦𝑦1(1) = 0,   𝑦𝑦2(0) = 𝑦𝑦2(1) = 0. (71) 

Since we applied the method in Section 3-4 for 𝑁𝑁 = 2, we can write  

(𝑦𝑦21)′′(𝑥𝑥) = 𝑎𝑎01𝑄𝑄0(𝑥𝑥) + 𝑎𝑎11𝑄𝑄1(𝑥𝑥) + 𝑎𝑎21𝑄𝑄2(𝑥𝑥)
(𝑦𝑦22)′′(𝑥𝑥) = 𝑎𝑎02𝑄𝑄0(𝑥𝑥) + 𝑎𝑎12𝑄𝑄1(𝑥𝑥) + 𝑎𝑎22𝑄𝑄2(𝑥𝑥)

 (72) 

and the residual of this problem becomes  

𝐑𝐑1(𝑥𝑥) ≈  𝐗𝐗(𝑥𝑥)(𝐁𝐁𝑇𝑇)2𝐃𝐃𝑇𝑇𝐀𝐀1 + 𝑥𝑥𝐗𝐗(𝑥𝑥)𝐃𝐃𝑇𝑇𝐀𝐀1 + 𝑥𝑥𝐗𝐗(𝑥𝑥)𝐃𝐃𝑇𝑇𝐀𝐀2 − 𝑿𝑿(𝑥𝑥)𝐊𝐊𝟏𝟏,𝟏𝟏
𝒕𝒕 𝐍𝐍𝐃𝐃𝑇𝑇𝐀𝐀1

− 𝑿𝑿(𝑥𝑥)𝐊𝐊𝟏𝟏,𝟐𝟐
𝒕𝒕 𝐍𝐍𝐃𝐃𝑇𝑇𝐀𝐀2 − 𝐗𝐗(𝑥𝑥)𝐃𝐃𝑇𝑇𝐆𝐆1𝑇𝑇 

(73) 

and  

𝐑𝐑2(𝑥𝑥) ≈  𝐗𝐗(𝑥𝑥)(𝐁𝐁𝑇𝑇)2𝐃𝐃𝑇𝑇𝐀𝐀2 + 2𝑥𝑥𝐗𝐗(𝑥𝑥)𝐃𝐃𝑇𝑇𝐀𝐀2 + 2𝑥𝑥𝐗𝐗(𝑥𝑥)𝐃𝐃𝑇𝑇𝐀𝐀1 − 𝑿𝑿(𝑥𝑥)𝐊𝐊𝟐𝟐,𝟏𝟏
𝒕𝒕 𝐍𝐍𝐃𝐃𝑇𝑇𝐀𝐀1

− 𝑿𝑿(𝑥𝑥)𝐊𝐊𝟐𝟐,𝟐𝟐
𝒕𝒕 𝐍𝐍𝐃𝐃𝑇𝑇𝐀𝐀2 − 𝐗𝐗(𝑥𝑥)𝐃𝐃𝑇𝑇𝐆𝐆2𝑇𝑇 . 

(74) 

where  

𝐃𝐃 = �
2 0 0
0 2 0
2 0 4

� ,𝐁𝐁 = �
0 0 0
1 0 0
0 2 0

� ,𝐗𝐗(𝑥𝑥) = �
1
𝑥𝑥
𝑥𝑥2
�
𝑇𝑇

,𝐆𝐆𝟏𝟏𝑻𝑻 = �
2
0
0
� ,𝐆𝐆𝟐𝟐𝑻𝑻 = �

−2
0
0
�, 

𝐀𝐀1 = �
𝑎𝑎01

𝑎𝑎11

𝑎𝑎21
� , 𝐀𝐀2 = �

𝑎𝑎02

𝑎𝑎12

𝑎𝑎22
� , 𝐐𝐐 = �

2 0 2/3
0 2/3 0

2/3 0 2/5
� , 𝐊𝐊11(𝑥𝑥) = �

1 0 0
0 0 0
0 0 0

�, 

 𝐊𝐊12(𝑥𝑥) = �
1 0 0
0 0 0
0 0 0

� ,𝐊𝐊21(𝑥𝑥) = �
2 0 0
0 0 0
0 0 0

� ,𝐊𝐊22(𝑥𝑥) = �
21 0 0
0 0 0
0 0 0

�. 

Thus, we use the Equations (32) and (33) and we gain  

−6𝑎𝑎01+
4
3
𝑎𝑎11 +

20
3
𝑎𝑎21 − 6𝑎𝑎02 +

4
3
𝑎𝑎12 −

28
3
𝑎𝑎22 = 4 (75) 

−12𝑎𝑎01 +
8
3
𝑎𝑎11 −

56
3
𝑎𝑎21 − 12𝑎𝑎02 +

8
3
𝑎𝑎12 −

8
3
𝑎𝑎22 = −4 (76) 

and for conditions we gain 

𝑦𝑦21(0) = 𝐗𝐗(0)𝐃𝐃𝑇𝑇𝐀𝐀1 = 2𝑎𝑎01 + 2𝑎𝑎21 = 0
𝑦𝑦21(1) = 𝐗𝐗(1)𝐃𝐃𝑇𝑇𝐀𝐀1 = 2𝑎𝑎01 + 2𝑎𝑎11 + 6𝑎𝑎21 = 0

𝑦𝑦22(0) = 𝐗𝐗(0)𝐃𝐃𝑇𝑇𝐀𝐀2 = 2𝑎𝑎02 + 2𝑎𝑎22 = 0
𝑦𝑦22(1) = 𝐗𝐗(1)𝐃𝐃𝑇𝑇𝐀𝐀2 = 2𝑎𝑎02 + 2𝑎𝑎12 + 6𝑎𝑎22 = 0

 (77) 

Hence, we solve the system (34),(35),(36) and we obtain 
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𝑎𝑎01 = −
1
4

, 𝑎𝑎11 = −
1
2

,𝑎𝑎21 =
1
4

,𝑎𝑎02 =
1
4

, 𝑎𝑎12 =
1
2

,𝑎𝑎22 = −
1
4

. 
(78) 

 

We put these coefficients in the Equation (31), and so we gain the approximate solutions as 

𝑦𝑦21(𝑥𝑥) = −5.551115123125783𝑒𝑒 − 17 − 9.999999962747099𝑒𝑒 − 01 𝑥𝑥
+ 9.999999962747100𝑒𝑒 − 01 𝑥𝑥2, 

(79) 

 𝑦𝑦22(𝑥𝑥) = 1.000000011175870𝑒𝑒 + 00𝑥𝑥−1.000000011175870𝑒𝑒 + 00𝑥𝑥2. (80) 

Here, the approximate solution and the absolute errors for 𝑦𝑦21(𝑥𝑥) are given in Table 2 and Figure 
1. And the approximate solution and the absolute errors for 𝑦𝑦22(𝑥𝑥) are given in Table 3 and 
Figure 2.  Also, the absolute errors for 𝑁𝑁 = 2, 5 are given in Table 3. When all these tables and 
graphs are examined, it can be said that the method is effective. 

Tablo 6 The exact solution, the approximate solution and the actual absolute error of the system 
(29)-(30) for 𝑦𝑦21(𝑥𝑥) 

 Exact solution Approximate Solution Actual Absolute Error 

𝒙𝒙𝒊𝒊 𝑦𝑦(𝑥𝑥𝑖𝑖) =  −𝑥𝑥 + 𝑥𝑥2 𝑁𝑁 = 2, 𝑦𝑦21(𝑥𝑥𝑖𝑖) 𝑁𝑁 = 2, 𝑒𝑒21(𝑥𝑥𝑖𝑖) 

𝟎𝟎 0 −5.551115123125783𝑒𝑒
− 17 

5.5511𝑒𝑒 − 17 

𝟎𝟎.𝟐𝟐 −0.16 −0.159999999403954 5.9605𝑒𝑒 − 10 

𝟎𝟎.𝟒𝟒 −0.24  −0.239999999105930 8.9407𝑒𝑒 − 10 

𝟎𝟎.𝟔𝟔 −0.24 −0.239999999105930  8.9407𝑒𝑒 − 10 

𝟎𝟎.𝟖𝟖 −0.16 −0.159999999403954 5.9605𝑒𝑒 − 10 

𝟏𝟏 0 5.551115123125783𝑒𝑒 − 17 5.5511𝑒𝑒 − 17 

 

Tablo 7 The exact solution, the approximate solution and the actual absolute error of the system 
(29)-(30) for 𝑦𝑦22(𝑥𝑥) 

 Exact solution Approximate 
Solution 

Actual Absolute 
Error 

𝒙𝒙𝒊𝒊 𝑦𝑦(𝑥𝑥𝑖𝑖) =  𝑥𝑥 − 𝑥𝑥2 𝑁𝑁 = 2, 𝑦𝑦22(𝑥𝑥𝑖𝑖) 𝑁𝑁 = 2, 𝑒𝑒22(𝑥𝑥𝑖𝑖) 
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𝟎𝟎 0 0 0 

𝟎𝟎.𝟐𝟐 0.16 0.160000001788139 1.7881𝑒𝑒 − 09 

𝟎𝟎.𝟒𝟒 0.24  0.240000002682209 2.6822𝑒𝑒 − 09 

𝟎𝟎.𝟔𝟔 0.24 0.240000002682209  2.6822𝑒𝑒 − 09 

𝟎𝟎.𝟖𝟖 0.16 0.160000001788139 1.7881𝑒𝑒 − 09 

𝟏𝟏 0 0 0 

 

Tablo 8 The actual absolute error of the system (29)-(30)  

 Actual Absolute Error 

𝒙𝒙𝒊𝒊 𝑁𝑁 = 2,
𝑒𝑒21(𝑥𝑥𝑖𝑖) 

𝑁𝑁 = 2,
𝑒𝑒22(𝑥𝑥𝑖𝑖) 

𝑁𝑁 = 5,
𝑒𝑒51(𝑥𝑥𝑖𝑖) 

𝑁𝑁 = 5,
𝑒𝑒52(𝑥𝑥𝑖𝑖) 

𝟎𝟎 5.5511𝑒𝑒 − 17 0 1.5828e-17 1.1744e-17 

𝟎𝟎.𝟐𝟐 5.9605𝑒𝑒 − 10 1.7881𝑒𝑒 − 09 8.5573e-14 1.6507e-13 

𝟎𝟎.𝟒𝟒 8.9407𝑒𝑒 − 10 2.6822𝑒𝑒 − 09 1.3161e-13 2.5128e-13 

𝟎𝟎.𝟔𝟔  8.9407𝑒𝑒 − 10  2.6822𝑒𝑒 − 09 1.3258e-13 2.5503e-13 

𝟎𝟎.𝟖𝟖 5.9605𝑒𝑒 − 10 1.7881𝑒𝑒 − 09 8.7871e-14 1.7162e-13 

𝟏𝟏 5.5511𝑒𝑒 − 17 0 2.1519e-16 6.3068e-17 
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Figure 3 The exact solution and the approximate of the system (29)-(30) for 𝑦𝑦21(𝑥𝑥) 

 

 

Figure 4   The exact solution and the approximate of the system (30)-(31) for 𝑦𝑦22(𝑥𝑥) 
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6. CONCLUSIONS 

In this work, we developed a method based on Pell-Lucas polynomials that solves numerically 
the system of linear Fredholm integral equation. For the method, the problem was reduced to 
the algebraic equation system. The coefficients of this system were determined depending on 
the Pell-Lucas polynomials. The solution of this system give us the coefficients of the 
approximate solution. Thus, approximate solutions were obtained based on Pell-Lucas 
polynomials. The application of the method was also made and it was seen with the help of 
tables and graphics that the method was effective. The method can also be improved for the 
Volterra integral part if the necessary adjustments are made. 
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MATHEMATICS EDUCATION CREATING FEAR AND MISCONCEPTION 

Dr. ANNA NEENA GEORGE 

ASSOCIATE PROFESSOR, GVM’S DR. DADA VAIDYA COLLEGE OF EDUCATION 

PONDA-GOA 

Mathematics is the most misunderstood, hated and feared subject. The need of the subject and 
its role in human life is scarcely clear to people, in general. The damage is done in the teaching 
of the subject by emphasis on the manipulation of symbols and getting the correct answer 
swiftly.  Mathematics learning needs to embrace the meaning of the subject rather than play 
with symbols for marks. The understanding of the problem and the concepts have been 
relegated and replaced with extreme emphasis to speed of finding the ‘right answer’. The  very 
crux of mathematics teaching is to develop problem solving skills and   to apply  it in real life 
context. It is supposed to make humans think and rationalize. 

Cobb et al. (1991) suggested, the purpose for engaging in problem solving is not just to solve 
specific problems, but to 'encourage the interiorization and reorganization of the involved 
schemes as a result of the activity'.   Schoenfeld(1994) opines the conventional learning of 
mathematics only enables students to perform algorithmically and understand mathematics 
without reasoning, Jenning and Dunne (1999 )have expressed the view that most students have 
difficulty in applying mathematics in real-world situations and Van den Heuvel-Panhuizen  
(1988) argues that students will most likely fail to remember the concepts and will be unable to 
apply mathematical concepts.  

In this paper the discussion will be about the wrong understanding of mathematics developed 
by faulty teaching methods. The amount of fear and misconception due to formal education and 
emphasis on knowing the algorithm while street children and semi-literates  use mathematics 
with proficiency. 
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ABSTRACT 

In this paper we de_ne the Ces_aro second-order summability method for fuzzy numbers and 
prove Korovkin type theorem, then as the application of it, we prove the rate of convergence. 
In the last section, we prove the kind of Voronovskaya type theorem and give some concluding 
remarks related to the obtained results. Mathematics Subject Classi_cation (2010): 40A10, 
40C10, 40E05, 40A05, 40G99, 26E50. 

Keywords: Ces_aro second order summability method, statistical convergence, 

Korovkin type theorem, rate of convergence, Voronovskaya type theorem. 
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YÜKSEK MERTEBEDEN HOMOJEN OLMAYAN BİR ADİ DİFERANSİYEL 
DENKLEMİN NÜMERİK YÖNTEMLE ÇÖZÜMÜ ÜZERİNE 

ON SOLUTIONS OF A HIGHER ORDER NONHOMOGENEOUS ORDINARY 
DIFFERENTIAL EQUATION WITH a NUMERICAL METHOD 
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ÖZET 

Yüksek mertebeden diferansiyel denklemler modelleme sürecinde önemli bir role sahiptir. 
Çözüm için hangi yöntemin kullanıldığı da bir o kadar önemlidir. Bu çalışmada, homojen 
olmayan bir başlangıç değeri probleminin yaklaşık çözümünü elde etmek için, üretici çekirdekli 
Hilbert uzayı metodu kullanılmıştır.. Üretici çekirdek fonksiyonu elde edilmiş, üzerinde 
çalışılan problem homojen hale getirilmiştir. Sonuçlar grafiklerle sunulup, mutlak hatalar ve 
göreceli hatalar tablolar halinde verilmiştir. 

Anahtar Kelimeler: Üretici Çekirdek Yöntemi, Homojen Olmayan Adi Diferansiyel 
Denklemler,  Başlangıç Değer Problemi, Yaklaşık Çözüm 

 

ABSTRACT 

Higher order differential equations (ODE) has a vital role in the modelling. It is also important 
which method is used for the solution. In this study, with the purpose of obtaining the 
approximate solution of a nonhomogeneous initial value problem,  reproducing kernel Hilbert 
space method is used. Reproducing kernel function has been obtained and the problem 
transformed to the homogeneous form by using a special transformation function. The results 
have been presented with the graphics. Absolute errors and relative errors have been given in 
the tables.  

Keywords: Reproducing  Kernel  Method,  Nonhomogeneous Ordinary Differential Equations,  
Initial Value Problems,  Approximate Solution 
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ABSTRACT 

In this paper, we establish sufficient conditions for the existence of solutions of a class of initial 
value problems for impulsive fractional differential equations involving the Hadamad fractional 
derivative of order 0 < 𝑜𝑜 ≤ 1. These results are based on fixed point theorems. 

Key words: Initial value problem, fractional differential equation, impulsive, Hadamard 

fractional derivative, fractional integral, fixed point theorem. 

AMS Subject Classification: 26A33, 34A37 

 

1 INTRODUCTION 

For  0 < 𝑜𝑜 ≤ 1; this paper deals with the existence of solutions of initial value problems (IVP 

for short), for the impulsive fractional order differential equation, 

DrH y(t)  =  f(t;  y(t)); for almost each t ∈ J =  [1;  T]; (1.1) 

∆𝑦𝑦\𝑡𝑡 = 𝑡𝑡𝑘𝑘 = 𝐼𝐼𝑘𝑘�𝑦𝑦(𝑡𝑡𝑘𝑘−)�; k = 1,… , m; (1.2) 

y(1) = 0; (1.3) 

where DrH  is the Hadamard fractional derivative, f ∶  J × R → R is a continuous function, 

𝐼𝐼𝑘𝑘: R →R, k = 1,…, m; 1 = 𝑡𝑡0 < 𝑡𝑡1 < …< 𝑡𝑡𝑚𝑚 < 𝑡𝑡𝑚𝑚+1 = T;_∆𝑦𝑦\𝑡𝑡 = 𝑡𝑡𝑘𝑘 = 𝑦𝑦(𝑡𝑡𝑘𝑘+) − 𝑦𝑦(𝑡𝑡𝑘𝑘−),  

𝑦𝑦(𝑡𝑡𝑘𝑘+) = lim
ℎ→0+

(𝑦𝑦(𝑡𝑡𝑘𝑘 + ℎ)) , and 𝑦𝑦(𝑡𝑡𝑘𝑘−) = lim
ℎ→0−

(𝑦𝑦(𝑡𝑡𝑘𝑘 + ℎ)) represent the right and left limits 

of  y(t) at t = tk, k = 1, … ,m. 

2 PRELIMINARIES 

2.1 Notations and Definitions 

In this section, we introduce notations, definitions, and preliminary facts that are used in the 

remainder of this paper. 

Let J = [1; T] be a compact interval, C([1; T];R) be the 

‖𝑦𝑦‖∞ = 𝑠𝑠𝑠𝑠𝑝𝑝{|𝑦𝑦(𝑡𝑡)|: 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇}, 
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and we denote by 𝐿𝐿1 ([1; T];R) the Banach space of functions y : [1; T] → R that are Lebesgue 

integrable with norm 

‖𝑦𝑦‖ 𝐿𝐿1 = ∫ |𝑦𝑦(𝑡𝑡)|𝑑𝑑𝑡𝑡𝑇𝑇
1 . 

AC([1; T],R) is the space of functions  y : [1; T] →R, which are absolutely continuous. 

 

Theorem 2.1 (Arzela-Ascoli theorem) Let A be a subset of C(J;E) ; A is relatively com- 

pact in C(J;E) if and only if the following conditions are met: 

(a) The set A is bounded  ie : 

∃𝑘𝑘 > 0: ‖𝑓𝑓(𝑥𝑥)‖ ≤ 𝑘𝑘,∀ 𝑥𝑥 ∈ 𝐽𝐽 𝑎𝑎𝑛𝑛𝑑𝑑 ∀ 𝑓𝑓 ∈ 𝐴𝐴. 

(b) Set A is equicontinuous  ie : 

∀𝜀𝜀 > 0,∃𝛿𝛿 > 0: |𝑡𝑡1 − 𝑡𝑡2| < 𝛿𝛿 ⇒ ‖𝑓𝑓(𝑡𝑡1) − 𝑓𝑓(𝑡𝑡2)‖ ≤ 𝜀𝜀 𝑓𝑓𝑜𝑜𝑜𝑜 𝑎𝑎𝑙𝑙𝑙𝑙 𝑡𝑡1, 𝑡𝑡2, ∈ 𝐽𝐽 𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎𝑙𝑙𝑙𝑙  𝑓𝑓 ∈ 𝐴𝐴. 

(c) For all 𝑥𝑥 ∈ 𝐽𝐽: 𝑠𝑠𝑒𝑒𝑡𝑡 {𝑓𝑓(𝑥𝑥), 𝑓𝑓 ∈ 𝐴𝐴} ⊂ 𝐸𝐸 is relatively compact. 

Definition 2.2 The Hadamard fractional integral of order r for a function h : [1;+∞)→ R is 
defined as 

𝐼𝐼𝑟𝑟ℎ(𝑡𝑡) = 1
⎾(𝑟𝑟)∫ (log 𝑡𝑡

𝑠𝑠
)𝑟𝑟−1 ℎ(𝑠𝑠)

𝑠𝑠
𝑡𝑡
1 𝑑𝑑𝑠𝑠,  𝑜𝑜 > 0, 

provided the integral exists. 

Definition 2.3 For a function h given on the interval [1;+∞); the r Hadamard 

fractional-order derivative of  h, is defined by 

� 𝐷𝐷𝑟𝑟𝐻𝐻 ℎ(𝑡𝑡)� =
1

⎾(𝑛𝑛 − 𝑜𝑜) �𝑡𝑡
𝑑𝑑
𝑑𝑑𝑡𝑡�

𝑛𝑛

� �log
𝑡𝑡
𝑠𝑠�

𝑛𝑛−𝑟𝑟−1 ℎ(𝑠𝑠)
𝑠𝑠

𝑡𝑡

1
𝑑𝑑𝑠𝑠,𝑛𝑛 − 1 < 𝑜𝑜 < 𝑛𝑛,𝑛𝑛 = [𝑜𝑜] + 1. 

Here  n = [r] + 1 and [r] denotes the integer part of r and log(.) = loge(.). 

 

2.2 Fixed point theorem 

Theorem 2.4  [Banach's theorem] Let X a Banach space. N : X →X is a contract- 

ing operator, Then there is a single fixed point . 

Theorem 2.5  [Schaefer's theorem] Let X be a Banach space and N : X → X com- 

pletely continuous operator. If the set 

E(N) = {x ∈ X: x = λNx for λ ∈ [0,1]}, 
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is bounded, then N has fixed points. 

Theorem 2.6 [Nonlinear alternative of Leray Schauder] Let X be a Banach space 

and C a nonempty convex subset of X. Let U a nonempty open subset of C with 0 ∈U and 

T : U →C continuous and compact operator. 

Then either 

(a) T has fixed points. Or 

(b) There exist u ∈ 𝜕𝜕U and  λ ∈ [0; 1] with x = λT(x). 

3 EXISTENCE OF SOLUTIONS 

Consider the set of functions 

PC(J;R) ={ y : J → R,  y ∈ C((tk; tk+1],R); k = 1, … , m; and there exist 
𝑦𝑦(𝑡𝑡𝑘𝑘+) 𝑎𝑎𝑛𝑛𝑑𝑑 𝑦𝑦(𝑡𝑡𝑘𝑘−), 𝑘𝑘 = 1, … ,𝑚𝑚,𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑦𝑦(𝑡𝑡𝑘𝑘+) = 𝑦𝑦(𝑡𝑡𝑘𝑘)}. 

This set is a Banach space with the norm 

‖𝑦𝑦‖𝑃𝑃𝑃𝑃 = 𝑠𝑠𝑠𝑠𝑝𝑝{|𝑦𝑦(𝑡𝑡)|: 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇} 

And let 

PC’(J;R) ={ y : J → R,  y ∈ 𝐴𝐴C((tk; tk+1],R); k = 1, … , m; and there exist 
𝑦𝑦(𝑡𝑡𝑘𝑘+) 𝑎𝑎𝑛𝑛𝑑𝑑 𝑦𝑦(𝑡𝑡𝑘𝑘−), 𝑘𝑘 = 1, … ,𝑚𝑚,𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑦𝑦(𝑡𝑡𝑘𝑘+) = 𝑦𝑦(𝑡𝑡𝑘𝑘)}. 

This set is a Banach space with the norm 

‖𝑦𝑦‖𝑃𝑃𝑃𝑃′ = 𝑠𝑠𝑠𝑠𝑝𝑝{|𝑦𝑦(𝑡𝑡)|: 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇}, 

Set 

𝐽𝐽′ = 𝐽𝐽\{𝑡𝑡1, … , 𝑡𝑡𝑚𝑚}. 

Definition 3.1 A function y ∈PC(J;R) ∩PC’(J;R) is said to be a solution of (1.1)-(1.3), 

if y satisfies DrH y(t) = f(t; y(t)) on J’and satisfies conditions (1.2)-(1.3). 

To prove the existence of solutions to (1.1)-(1.3), we need the following auxiliary lemma. 

Lemma 3.2 Let 0 < 𝑜𝑜 ≤ 1 and let 𝜌𝜌 ∈ C(J’;R) ∩AC(J’;R). A function y is a solution of 

the fractional integral equation 

y(t) = 1
⎾(𝑟𝑟)∫ (log 𝑡𝑡

𝑠𝑠
)𝑟𝑟−1 𝜌𝜌(𝑠𝑠)

𝑠𝑠
𝑡𝑡
1 𝑑𝑑𝑠𝑠 ; if t ∈ [1; t1] 

(log (𝑡𝑡−tk)
𝑙𝑙𝑙𝑙𝑙𝑙tk

)𝛼𝛼−1 � 1
⎾(𝑟𝑟)

∑ ∫ �log 𝑡𝑡
𝑠𝑠
�
𝑟𝑟−1 𝜌𝜌(𝑠𝑠)

𝑠𝑠
𝑡𝑡𝑘𝑘
𝑡𝑡𝑘𝑘−1

𝑑𝑑𝑠𝑠 +𝑚𝑚
𝑘𝑘=1 ∑ 𝐼𝐼𝑘𝑘�𝑦𝑦(𝑡𝑡𝑘𝑘)�𝑚𝑚

𝑘𝑘=1 � + 1
⎾(𝑟𝑟)∫ (log 𝑡𝑡

𝑠𝑠
)𝑟𝑟−1 𝜌𝜌(𝑠𝑠)

𝑠𝑠
𝑡𝑡
1 𝑑𝑑𝑠𝑠; 

if t ∈ (tk; tk+1]; k=1,. . . ,m. 

 

if and only if y is a solution of the impulsive fractional IVP 
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DrH y(t) = 𝜌𝜌(t); for each t ∈J’; (3.2) 

∆𝑦𝑦\𝑡𝑡 = 𝑡𝑡𝑘𝑘 = 𝐼𝐼𝑘𝑘�𝑦𝑦(𝑡𝑡𝑘𝑘−)�; k = 1,… , m; (3.3) 

y(1) = 0 ; (3.4) 

Our firrst result is based on the Banach fixed point theorem. 

Theorem 3.3 Assume the following conditions hold: 

(H1) There exists a constant l > 0 sush that 

|f(t, u) - f(t, ; 𝑠𝑠�)| ≤l |u-𝑠𝑠� | for each t ∈ J and u; 𝑠𝑠� ∈ R: 

(H2) There exists a constant l*> 0 such that 

|Ik(u) -Ik(; 𝑠𝑠�)| ≤ l* |u-𝑠𝑠� |  for each u; 𝑠𝑠� ∈ R and k = 1,…, m: 

If  [𝑙𝑙(𝑚𝑚+1)(𝑙𝑙𝑙𝑙𝑙𝑙𝑇𝑇)𝑟𝑟

⎾(𝑟𝑟+1)
 + ml*] < 1; (3.5) 

then (1.1)-(1.3) has a unique solution on J. 

Proof: To show the existence and the uniqueness of the solution of the problem (1.1)-(1.3) it 

suffices to verify the fixed point hypotheses of Banach. 

We define the operator F : PC(J;R) →PC(J;R) by 

F(y)(t)=�log(𝑡𝑡−tk)
𝑙𝑙𝑙𝑙𝑙𝑙tk

�
𝛼𝛼−1

� 1
⎾(𝑟𝑟)

∑ ∫ �log 𝑡𝑡
𝑠𝑠
�
𝑟𝑟−1 𝜌𝜌(𝑠𝑠)

𝑠𝑠
𝑡𝑡𝑘𝑘
𝑡𝑡𝑘𝑘−1

𝑑𝑑𝑠𝑠 +𝑚𝑚
𝑘𝑘=1 ∑ 𝐼𝐼𝑘𝑘�𝑦𝑦(𝑡𝑡𝑘𝑘)�𝑚𝑚

𝑘𝑘=1 � 

+
1

⎾(𝑜𝑜)
� (log

𝑡𝑡
𝑠𝑠

)𝑟𝑟−1
𝜌𝜌(𝑠𝑠)
𝑠𝑠

𝑡𝑡

1
𝑑𝑑𝑠𝑠 

The fixed points of the operator F are solutions of the problem (1.1)-(1.3). 

Let x; y ∈ PC(J;R) and t ∈ J 

|𝐹𝐹(𝑥𝑥)(𝑡𝑡) − 𝐹𝐹(𝑦𝑦)(𝑡𝑡)| ≤ [𝑙𝑙(𝑚𝑚+1)(𝑙𝑙𝑙𝑙𝑙𝑙𝑇𝑇)𝑟𝑟

⎾(𝑟𝑟+1)
 + ml*] ‖𝑥𝑥 − 𝑦𝑦‖∞ 

We will now prove that F is a strict contraction by Banach's theorem. 

 

2 Our second result is based on Schaefer's fixed point theorem. 

Theorem 3.4 Assume the following conditions hold: 

(H3) The function f : J ×R →R is continuous. 

(H4) There exists a constant M > 0 such that  |𝑓𝑓(𝑡𝑡,𝑠𝑠)| ≤ 𝑀𝑀 for each t ∈J and each u ∈ R: 

(H5) The functions Ik : R → R are continuous and there exists a constant M* > 0 such that 

|Ik(u)| ≤M*  for each u ∈ R; k = 1,…, m: 
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Then (1.1)-(1.3) has at least one solution on J. 

Proof: 

We will use Schaefer's fixed point theorem to prove that F has a fixed point. The proof 

will be given in several steps. 

Step 1 F is continuous. 

Let yn be a sequence such that yn →y in PC(J;R). For all t ∈ J, 

|𝐹𝐹(𝑦𝑦𝑛𝑛)(𝑡𝑡) − 𝐹𝐹(𝑦𝑦)(𝑡𝑡)|

≤ (
log (𝑡𝑡 − tk)
𝑙𝑙𝑜𝑜𝑔𝑔tk

)𝛼𝛼−1 �
1

⎾(𝑜𝑜)� � �log
𝑡𝑡𝑘𝑘
𝑠𝑠 �

𝑟𝑟−1 �𝑓𝑓�𝑠𝑠,𝑦𝑦𝑛𝑛(𝑠𝑠)� − 𝑓𝑓(𝑠𝑠, 𝑦𝑦(𝑠𝑠)�
𝑠𝑠

𝑡𝑡𝑘𝑘

𝑡𝑡𝑘𝑘−1
𝑑𝑑𝑠𝑠

𝑚𝑚

𝑘𝑘=1

+� |𝐼𝐼𝑘𝑘�𝑦𝑦𝑛𝑛(𝑡𝑡𝑘𝑘−)� − 𝐼𝐼𝑘𝑘�𝑦𝑦(𝑡𝑡𝑘𝑘−)�
𝑚𝑚

𝑘𝑘=1
|� +

1
⎾(𝑜𝑜)

� (log
𝑡𝑡
𝑠𝑠

)𝑟𝑟−1
�𝑓𝑓�𝑠𝑠,𝑦𝑦𝑛𝑛(𝑠𝑠)� − 𝑓𝑓(𝑠𝑠, 𝑦𝑦(𝑠𝑠)�

𝑠𝑠

𝑡𝑡

1
𝑑𝑑𝑠𝑠 

Since f and Ik; k = 1,…, m; are continuous functions, we have 

‖𝐹𝐹(𝑦𝑦𝑛𝑛) − 𝐹𝐹(𝑦𝑦)‖∞ → 0 𝑎𝑎𝑠𝑠 𝑛𝑛 → ∞. 

 

Step 2 The image of a set bounded by the operator F is a bounded set in PC(J;R). 

Indeed, it suffices to show that for everything µ ∗ there exists a positive constant l such 

that for each y ∈ Bµ*= {y ∈ PC(J;R) : ‖𝑦𝑦‖∞ ≤ µ ∗}we have   ‖𝐹𝐹(𝑦𝑦)‖∞ ≤ 𝑙𝑙}.We have, 

for everything t ∈ J, 

|𝐹𝐹(𝑦𝑦)(𝑡𝑡)| ≤  �
𝑙𝑙(𝑚𝑚 + 1)(𝑙𝑙𝑜𝑜𝑔𝑔𝑇𝑇)𝑟𝑟

⎾(𝑜𝑜 + 1)  +  ml ∗� = l 

Step 3 F maps bounded sets into equicontinuous sets of PC(J;R). 

Let  𝜏𝜏1, 𝜏𝜏2 ∈ J; 𝜏𝜏1< 𝜏𝜏2, Bµ* is a bounded set which defined in 2rd step and let y ∈ Bµ* . So 

 |𝐹𝐹(𝑦𝑦)(𝜏𝜏2) − 𝐹𝐹(𝑦𝑦)( 𝜏𝜏1)| ≤ 𝑀𝑀
⎾(𝑟𝑟+1)

[2[log(𝜏𝜏2 −  𝜏𝜏1)]𝑟𝑟 + (log 𝜏𝜏2)𝑟𝑟 − (log 𝜏𝜏1)𝑟𝑟] +

∑ 𝐼𝐼𝑘𝑘�𝑦𝑦(𝑡𝑡𝑘𝑘−)�0<𝑡𝑡𝑘𝑘<𝜏𝜏2− 𝜏𝜏1 . 

step 4 Apriori bounds 

Let the set  𝜀𝜀= { y ∈ PC(J;R) : y = 𝜏𝜏F(y) for all 0 < 𝜏𝜏< 1} be bounded. 

Let y ∈ 𝜀𝜀, we have 

y(t)=�log(𝑡𝑡−tk)
𝑙𝑙𝑙𝑙𝑙𝑙tk

�
𝛼𝛼−1

� 𝜏𝜏
⎾(𝑟𝑟)

∑ ∫ �log 𝑡𝑡
𝑠𝑠
�
𝑟𝑟−1 𝑓𝑓�𝑠𝑠,𝑦𝑦(𝑠𝑠)�

𝑠𝑠
𝑡𝑡𝑘𝑘
𝑡𝑡𝑘𝑘−1

𝑑𝑑𝑠𝑠 +𝑚𝑚
𝑘𝑘=1 ∑ 𝐼𝐼𝑘𝑘�𝑦𝑦(𝑡𝑡𝑘𝑘)�𝑚𝑚

𝑘𝑘=1 � 

+
𝜏𝜏

⎾(𝑜𝑜)
� (log

𝑡𝑡
𝑠𝑠

)𝑟𝑟−1
𝑓𝑓(𝑠𝑠,𝑦𝑦(𝑠𝑠))

𝑠𝑠

𝑡𝑡

𝑡𝑡𝑘𝑘
𝑑𝑑𝑠𝑠 



1. INTERNATIONAL CONGRESS ON MATHEMATICS AND GEOMETRY 
9 DECEMbER 2020 
ANKARA, TURKEY 

PROCEEDINGS bOOK                                               56 www.IzDAS.ORG 

for all t ∈J. 

We use Schaefer's theorem assumptions, then we get 

‖𝑦𝑦‖∞ ≤
𝑀𝑀𝑚𝑚(𝑙𝑙𝑜𝑜𝑔𝑔𝑇𝑇)𝑟𝑟

⎾(𝑜𝑜 + 1)  +
𝑀𝑀(𝑙𝑙𝑜𝑜𝑔𝑔𝑇𝑇)𝑟𝑟

⎾(𝑜𝑜 + 1) +  mM ∗= R. 

We prove that the set 𝜀𝜀 is bounded. 

From Schaefer's fixed point theorem, we deduce that F has fixed points which are 

solutions of the problem (1.1)-(1.3). 

In the following theorem we give an existence result for the problem (1.1)-(1.3) by applying 

the nonlinear alternative of Leray-Schauder type and for which the conditions (H4) and (H5) 

are weakened. 

Theorem 3.5 Assume that (H2) and the following conditions hold: 

(H6) There exist 𝜑𝜑𝑓𝑓 ∈ 𝐶𝐶(𝐽𝐽,𝑅𝑅+)and   𝜓𝜓: [0;+∞) →(0;+∞) continuous and non-decreasing such 

that 

|𝑓𝑓(𝑡𝑡,𝑠𝑠)| ≤ 𝜑𝜑𝑓𝑓(𝑡𝑡)𝜓𝜓(|𝑠𝑠|)for all t ∈ J; u ∈ R: 

(H7) There exists  𝜓𝜓 * : [0;+∞) →(0;+∞)  continuous and nondecreasing such that 

|Ik(u)| ≤ 𝜓𝜓 *  (|𝑠𝑠|)for all u ∈ R; i = 1,…, m. 

(H8) There exists a number 𝑀𝑀�  > 0 such that 

 𝑀𝑀�

𝜓𝜓(𝑀𝑀�)
𝑚𝑚𝜑𝜑𝑓𝑓

0(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝑟𝑟

⎾(𝑟𝑟+1) +𝜓𝜓(𝑀𝑀�)
𝜑𝜑𝑓𝑓
0(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝑟𝑟

⎾(𝑟𝑟+1) +𝑚𝑚 𝜓𝜓 ∗ 𝑀𝑀�   
> 1, 

where  

𝜑𝜑𝑓𝑓0 = sup� 𝜑𝜑𝑓𝑓(𝑡𝑡): 𝑡𝑡 ∈ 𝐽𝐽�. 

Then(1.1)-(1.3) has at least one solution on J. 

Proof: 

When we have shown that the operator F : 𝑈𝑈� →PC(J;R) is continuous and completely 

continuous by the previous theorem. 

1. For 𝜏𝜏 ∈[0; 1], let y such that, for each t ∈ J; we have y(t) = 𝜏𝜏 (Fy)(t). Then the 

Leray-Schauder theorem hypothesis we have for each t ∈  J, 

‖𝑦𝑦‖∞ ≤ 𝜓𝜓(‖𝑦𝑦‖∞)
𝑚𝑚𝜑𝜑𝑓𝑓

0(𝑙𝑙𝑙𝑙𝑙𝑙𝑇𝑇)𝑟𝑟

⎾(𝑟𝑟+1)
 + 𝜓𝜓(‖𝑦𝑦‖∞)

𝜑𝜑𝑓𝑓
0(𝑙𝑙𝑙𝑙𝑙𝑙𝑇𝑇)𝑟𝑟

⎾(𝑟𝑟+1)
+  m𝜓𝜓 ∗ (‖𝑦𝑦‖∞).  

2. According to the Leray-Schauder theorem, there exists  𝑀𝑀�  > 0 such that ‖𝑦𝑦‖∞ ≠ 𝑀𝑀� . Let 
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U = {y ∈ PC(J;R) : ‖𝑦𝑦‖∞ < 𝑀𝑀�}. 

The choice of U, results in that there is no y ∈ 𝜕𝜕U such that y = 𝜏𝜏F(y) with  𝜏𝜏 ∈ (0; 1). 

Therefore, after the Leray-Schauder nonlinear alternative, we deduce that F has a _xed 

point y ∈U which represents a solution of the problem (1.1)-(1.3). 

4 AN EXAMPLE 

In this section we give an example to illustrate the usefulness of our main results. Les us 

consider the impulsive fractional initial-value problem, 

HDr y(t) = 𝑒𝑒−𝑡𝑡|𝑦𝑦(𝑡𝑡)|
(9+𝑒𝑒𝑡𝑡)(1+|𝑦𝑦(𝑡𝑡)|)

 ,  for a.e. t ∈ 𝐽𝐽 = [1, 𝑒𝑒], 𝑡𝑡 ≠ 3
2

, 0 < 𝑜𝑜 < 1,    (4.1) 

∆𝑦𝑦\𝑡𝑡 = 3
2

=
|𝑦𝑦(32)−|

3+|𝑦𝑦(32)−|
; k = 1,… , m; ; (4.2) 

y(1) = 0: (4.3) 

Set f(t; x) = 𝑒𝑒−𝑡𝑡𝑥𝑥
(9+𝑒𝑒𝑡𝑡)(1+𝑥𝑥)

 ; (t; x) ∈ J ×[0;+∞); and Ik(x) = 𝑥𝑥
3+𝑥𝑥

 ; x ∈ [0; +∞). Let x; y  ∈ [0; +∞) 

and t ∈  J. Then we have 

|f(t, x)- f(t, y)|≤ 1
10

 |x-y|. 

Hence the condition (H1) holds with l = 1
10

. 

Let x; y  ∈ [0; +∞). Then we have 

| Ik(x) −  Ik(y)  | ≤ 1
3
 |x-y|. 

Hence the condition (H2) holds with l* = 1
3
. 

3 . We shall check that condition (3.5) is satisfied 

with T = e and m = 1. Indeed, 

 

  [𝑙𝑙(𝑚𝑚+1)(𝑙𝑙𝑙𝑙𝑙𝑙𝑇𝑇)𝑟𝑟

⎾(𝑟𝑟+1)
 + ml*]< 1 𝑖𝑖𝑓𝑓𝑓𝑓 ⎾(𝑜𝑜 + 1) > 3

10
.; (4.4) 

which is satisfied for some r ∈ (0; 1]. Then by Theorem (3.3), the problem (1.1)-(1.3) has a 

unique solution on [1; e] for values of  r satisfying (4.4). 
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COEXISTENCE OF TWO LIMIT CYCLES FOR A CLASS OF PLANAR 
DIFFERENTIAL SYSTEMS 
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ABSTRACT 

The existence of limit cycles is interesting and very important in applications. It is a key to 
understanding the dynamics of polynomial differential systems. It is difficult to determine the 
explicit expression of a limit cycle. 

In this work, we investigate a class of a planar system and show that this system has two 
algebraic limit cycles around the same singular point. Furthermore, these limit cycles are 
explicitly given 

Keywords: First integral, Periodic orbits, Algebraic limit cycle, Coexistence 

 

INTRODUCTION AND PRELIMINARIES 

A polynomial differential systems on the plane are systems of the form 

( )

( )







==

==

,,

,,
.

.

yxQ
dt
dyy

yxP
dt
dxx

     (1) 

where P  and Q  are two coprime polynomials of  [ ]yx,R   and the derivatives are performed 
with respect to the time variable. By definition, the degree of the system (1) is the maximum 
of the degrees of the polynomials  P   and  .Q   

The algebraic curve  ( ) 0, =yxU   is called an invariant curve for system (1) if there exists a 

polynomial  ( )yxK ,   (called the cofactor) such that 

( ) ( ) ( ) ( ) ( ) ( ).,,,,,, yxUyxKyx
y
UyxQyx

x
UyxP =

∂
∂

+
∂
∂  

We recall that in the phase plane, a limit cycle of system (1) is an isolated periodic solution in 
the set of all its periodic solutions. If limit cycle contained in the zero set of invariant 
algebraic curve of the plane, then we say that it is algebraic, otherwise it is called non-
algebraic. 
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In the qualitative theory of planar polynomial differential systems [5], one of the most 
important topics is related to the second part of the unsolved Hilbert 16th problem, concerned 
essentially by the number  ( )nH   of limit cycles of (1) and their positions in the phase space. 
There is an extensive literature on that subject, most of it deals essentially with detection, 
number and stability of limit cycles. 

Another interesting problem is to give an explicit expression of a limit cycle. Until recently, 
the only limit cycles known in an explicit way were algebraic (see, for example, [1, 2, 3, 4, 7] 
and references therein). 

To my knowledge, if a system admits more than one algebraic limit cycle, each of these 
cycles surrounds a singular point different from the other points. For example, Bendjeddou 
and Cheurfa [3] studied a class of quartic differential system and showed under certain 
conditions, the existence of up to four limit cycles but each cycle surrounds a singular point 
different from the others. 

In this work, we are interested on the differential system of the form 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ).2,

,2,
2222

5

.

2222
5

.

yxyybaxyxabyyxQy

yxxyxbayxabxyxPx

+++−++==

++−+−++==          (2) 

where  a  and  b   are reals constants such that  0>> ba  . Within this class, we prove the 
existence of two algebraic limit cycles surrounding the same singular point, moreover these 
limit cycles are explicitly given. 

 Proposition1: The origin is the only singular point of the system (2) and is a unstable node. 

 Proof : We have  

( ) ( ) ( ) ,2,, 222
55 yxyxxQyxyP +−=−  

thus the origin is the unique singular point of this system. Moreover the unique eigenvalue of 
the associated linearized system is  ,0>= abλ   then the origin is unstable node. 

THE MAIN RESULT 

Our main result is as follows 

 Theorem1:  The system (2) admits the two circles  ( ) ( ) 0,: 22
1 =−+=Γ ayxyxU   and  

( ) ( ) 0,: 22
2 =−+=Γ byxyxV   as limit cycles. Moreover ( )1Γ  is an unstable,  ( )2Γ   is a 

stable and  ( )2Γ   lies inside  ( ).1Γ   

 Proof: It is easy to check that the system (2) possesses  ( )1Γ   and  ( )2Γ   as invariant algebraic 
curves. The associated cofactors are respectively given 

( )( )byxyxK −++= 2222
1 2  
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and 

( )( ).2 2222
2 ayxyxK −++=  

As the two circles  ( )1Γ   and  ( )2Γ   do not pass through the origin, thus they are periodic 
solutions of the system (2).  
Let  1T   and  2T   denotes be the periods of  ( )1Γ   and  ( )2Γ   respectively. To show that  ( )1Γ   

and  ( )2Γ   are limit cycles, it is sufficient to check that 

( ) ( ) ( )( ) 0,div1

01 ≠=Γ ∫ dttytxI
T

 

and  

( ) ( ) ( )( ) .0,div2

02 ≠=Γ ∫ dttytxJ
T

 

According to theorem3  of [7], we have 

( ) ( ) ( )( ) ( ) ( )( )dttytxKdttytxI
TT

,,div 1001
11

∫∫ ==Γ  

and  

( ) ( ) ( )( ) ( ) ( )( ) .,,div2 200

22 dttytxKdttytxJ
TT

∫∫ ==Γ  

Therefore 

( ) ( )( )
( )( ) 02

2

22

0

2222

01

1

1

>−+=

−++=Γ

∫
∫

dtbayx

dtbyxyxI
T

T

 

and 

( ) ( )( )
( )( ) .02

22

222

0

2222

0

2

<−+=

−++=Γ

∫
∫

dtabyx

dtayxyxJ
T

T

 

Consequently,  ( )1Γ   and  ( )2Γ   define respectively an unstable limit cycle and a stable limit 
cycle for system (2). This complete the proof of theorem1. 

 Example1: In the system (2), we take  1=a  and  ,2=b   we obtain 

( ) ( )( )
( ) ( )( ).322

,232
2222

.

2222
.

yxyyxyxyy

yxxyxyxxx

++−++=

++−−++=        (3) 

which has two limit cycles  ( ) 01: 22
1 =−+Γ yx   and  ( ) 02: 22

2 =−+Γ yx   Moreover, the 

circle ( )2Γ  lies inside ( )1Γ  as shown on the Poincaré disc in Figure 1. 
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(I) (II) 

Figure 1 : (I) Represents the two limit cycles of the system (3) and 

(II) its phase portrait on the Poincaré disc 

CONCLUSION 

In this work, we have studied a quintic system and we have shown that it admits two circles as 
limit cycles surrounding the unique singular point, one inside the other (coexistence) 

Finally, it is of interest to extend this study by answering to the following questions: Is there a 
cubic or quartic system that exhibit two algebraic limit cycles surrounding the same singular 
point? 
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SURFACES WITH DENSITY IN MINKOWSKI 3-SPACE  
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ABSTRACT 

In this work, firstly we give some basic notations, definitions, theorems and results about 
surface with density in Euclidean and Minkowski 3-space. After that, we give a summary of 
informations about revolution surface and translation surface in Minkowski 3-space. Later, we 
write the equation of minimal surfaces in Minkowski 3- space with linear density (in the case 
φ(x,y,z) = x, φ(x,y,z) = y and φ(x,y,z) = z), and we characterize some solutions of the equation 
of minimal graphs in Minkowski 3-space with linear density Ψ= eφ. Moreover, we write the φ-
Gauss curvature and the φ - mean curvature formulae of the some revolution surfaces in 
Minkowkski 3-space with radial density e−aρ2+c. After this, we give some example and draw 
the graphs of φ- minimal surfaces for some special cases via Matlab program. 

Key Words: Surfeces With Density, Translation Surfaces, Minimal Surface, Minkowski 3-
Space, Graphical Surface 
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TUBULAR SURFACES CONSTRUCTED BY SPHERICAL INDICATRICES WITH 
DENSITY 

Dr. Erdem KOCAKUŞAKLI 

Ankara University, Institute of Science, Department of Mathematics, Ankara, Turkey 

ORCID NO: 0000-0003-0616-173X 

ABSTRACT 

In this work, firstly we give some basic notations, definitions, theorems and results about 
surface with density in Euclidean and Minkowski 3-space. After that, we give a summary of 
informations about canal and tubular surfaces in Euclidean 3 space. Later, we give the 
parametrisations of tubular surface constructed by spherical indicatrices of any spatial curve in 
Eucidean 3- space. In this work we construct the tubular surface according to the alternative 
moving frame {N,C,W}. Moreover, we write the φ-Gauss curvature and the φ - mean curvature 
formulae of the tubular surfaces which constructed by spherical indicarices in Euclidean 3- 
space with some density.  After this, we give φ-flat and φ-minimal equations of these surfaces. 
Moreover, we give the conditions for being φ-flat and φ-minimal of these surface 

Key Words: Surfaces With Density, Tubular Surfaces, Minimal Surface, Alternative Moving 
Frame. 
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ORDERS OF SOLUTIONS OF FRACTIONAL DIFFERENTIAL EQUATION 

  Dr. BEDDANI HAMID  

Ecole Supérieure en Génie Electrique et Energétique d’Oran. 

Laboratory of Pure and Applied Mathematics, University of  Mostaganem (UMAB), Algeria 

ABSTRACT 

We study the solutions of the fractional differential equation 

𝐷𝐷(𝛼𝛼)𝑓𝑓 + 𝐴𝐴(𝑧𝑧)𝐷𝐷(𝛽𝛽)𝑓𝑓 + 𝐵𝐵(𝑧𝑧)𝑓𝑓 = 0 

where 𝐷𝐷(𝛼𝛼),  and 𝐷𝐷(𝛽𝛽), are  the Caputo fractional derivatives of orders   and z is complex number, 
A(z), B(z) be entire functions. We find conditions on the coefficients so that every solution that 
is not identically zero has infinite order. 

Key words. The Caputo fractional derivative, entire function, infinite order, complex domain. 

 

INTRODUCTION 

Recently, the complex modelings of phenomena in nature and society have been the object of 
several investigations based on the methods originally developed in a physical context. These 
systems are the consequence of the ability of individuals to develop strategies. They occur in 
kinetic theory [1], complex dynamical systems [19], chaotic complex systems and hyperchaotic 
complex systems [25], and the complex Lorenz-like system which has been found in laser 
physics while analyzing baroclinic instability of the geophysical flows in the atmosphere (or in 
the ocean) [22, 26]. Sainty [23] considered the complex heat equation using a complex valued 
Brownian. A model of complex fractional equations is introduced by Jumarie [14, 15, 16, 17], 
using different types of fractional derivatives. Baleanu et al. [2, 3, 18], imposed several 
applications of fractional calculus including complex modelings. The author studied various 
types of fractional differential equations in complex domain such as the Cauchy equation, the 
diffusion equation and telegraph equations [9, 10, 11, 12, 13]. Transformis a significant 
technique to solve mathematical problems.Many useful transforms for solving various 
problems appeared in open literature such as wave transformation, the Laplace transform, the 
Fourier  transform, the Bücklund transformation, the integral transform, the local fractional 
integral transforms and the fractional complex transform (see [5, 21]) 

 In this section [24], we introduce some notations and definitions for fractional 

operators (derivative and integral) in the complex z-plane C as follows. 

Definition 1. The fractional derivative of order α is defined, for a function f(z), by 

𝐷𝐷(𝛼𝛼)𝑓𝑓(𝑧𝑧) =
1

Γ(1 − 𝛼𝛼)�
𝑓𝑓(𝜉𝜉)𝑑𝑑𝜉𝜉

(𝑧𝑧 − 𝜉𝜉)𝛼𝛼

𝑧𝑧

0

, 0 ≤ 𝛼𝛼 < 1, 
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where the function f is analytic in a simply-connected region of the complex plane containing 
the origin, and the multiplicity of (𝑧𝑧 − 𝜉𝜉)𝛼𝛼 is removed by requiring log(𝑧𝑧 − 𝜉𝜉)𝛼𝛼 to be real when 
(𝑧𝑧 − 𝜉𝜉) > 0. 

Throughout this paper, we assume that the reader is familiar with the fundamental 

results and the standard notations of the Nevanlinna value distribution theory of meromorphic 
functions (see [8]). Let 𝜌𝜌(f) denote the order of an entire function f, that is 

𝜌𝜌(𝑓𝑓) = 𝑙𝑙𝑖𝑖𝑚𝑚
𝑜𝑜 → +∞

𝑙𝑙𝑜𝑜𝑔𝑔𝑇𝑇(𝑜𝑜, 𝑓𝑓)
𝑙𝑙𝑜𝑜𝑔𝑔𝑜𝑜

, 

where T(r; f) is the Nevanlinna characteristic function of f (see [8]). 
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EXISTENCE RESULT OF A FRACTIONAL DIFFERENTIAL EQUATION OF 
HADAMARD TYPE WITH INTEGRAL BOUNDARY VALUE CONDITIONS 

Dr. Habib DJOURDEM 

Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of 
Oran1, Ahmed Benbella. Algeria 

ABSTRACT 

In this woek, we establish the existence of solutions for a fractional differential equations with 
Hadamard fractional integral  boundary condition. Our main result are obtained by using 
generalization of Darbo’s fixed point theorem combined with the technique of measures of 
noncompactness in the Banach algebras. An example is provided to illustrate our main results.  

Keywords:  Integral boundary value conditions; Measure of noncompactness; Hadamard 
fractional derivative; upper semicontinuous function. 
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LOGARITHMIC DERIVATIVE NEAR A SINGULAR POINT AND APPLICATIONS 
IN LINEAR DIFFERENTIAL EQUATIONS 

Saada HAMOUDA 

Laboratory of pure and applied mathematics, University of Mostaganem, Algeria 

ABSTRACT 

The logarithmic derivative play an important role in the study of the growth and oscillation of 
solutions of differential equations in the complex plane and in the unit disc. In this talk, we 
will provide new estimates of logarithmic derivatives around an isolated finite singular point 
by making use a suitable conformal mapping and an addaptation notions of Nevanlinna theory 
of meromorphic function and Wiman-Valiron theory of entire function. As applications, we 
investigate the growth of solutions of certain types of  linear differential equations with non 
meromorphic coefficients. 

Keywords: Nevanlinna theory, Wiman-Valiron theory, logarithmic derivative, linear 
differential equations, growth of solutions. 
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DERECELENDİRİLMİŞ ASAL İDEALLERİN GENELLEŞTİRİLMESİ ÜZERİNE 
BİR NOT 

A NOTE ON A GENERALIZATION OF GRADED PRIME IDEALS 

Dr. Öğr. Üyesi Rabia Nagehan ÜREGEN 
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ÖZET 

Bu çalışmada derecelendirilmiş asal ideallerin bir genellemesi tanıtılacaktır. Bu genelleme 
yardımıyla derecelendirilmiş asal idealler, derecelendirilmiş zayıf asal idealler gibi çeşitli 
ideallerin arasındaki ilişkiler ortaya konulacaktır.  

Anahtar Kelimeler: derecelendirilmiş asal ideal, derecelendirilmiş zayıf asal ideal, 
derecelendirilmiş 2-yutan ideal, derecelendirilmiş yarı asalımsı ideal. 

 

ABSTRACT  
In this paper, a generalization of graded prime ideals will be introduced. With the help of this 
generalization, the relationships between various ideals such as graded prime ideals and graded 
weakly prime ideals will be revealed. 

Keywords: graded prime ideal, graded weakly prime ideal, graded 2-absorbing ideal, graded 
quasi primary ideal. 
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STABILITY OF SOLUTIONS OF  INITIAL VALUE  PROBLEM  FOR A CLASS OF 
STOCHASTIC FRACTIONAL  DIFFERENTIAL EQUATION WITH NOISE 

Dr. Noureddine BOUTERAA 
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University of Oran1, Ahmed Benbella. Algeria. 

ABSTRACT 

In this work, we will introduce a fractional Duhamel principle and use it to establish the well 
boudedness and stability of a mild solution to fractional stochastic equation with initial data. 

Keywords:  Stochastic equation, Fractional derivative, Mild solution, Stability. 
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