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A graded ring by R which is a direct sum of subgroups @ 956 Jg with the following property
RgRy € Rgp forall g, h € G, where G is an arbitrary group.

We denote the set of all homogeneous elements by

h(R) = Uyeq R,

If [ is an ideal of R and I =@ je¢ Iy, where Iy = I N Ry then [ is called a graded ideal of R.
[
The graded radical of a graded ideal I is defined as follows:

Gr(l) ={rer: 1" €I for some ng = 0,where g € G}
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3. Rotational Surface with Density in Minkowski 3-Space

Corollary

Let 5 be a rotational surface as given (2) with spacelike axis in
Minkowski 3-space with e~ = density. S is g-minimal if and > Dosyn Génder
only if
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Let S be a rotational surface as given (2) with spacelike axis in
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~z + a2 (2, 1)2 =0 (14)

Erdem KOCAKUSAKL| Surface With Dy

Leave Room

O O & AEEED 9.::20320 8

&/

m P Aramak icin buraya yazin 0 c. n




View Options v
2 2L Byt Full Screen

T surface with density pdf - Adobe Reader

Dosya Diizenle Goriniim Pencere  Yardim

| 3 | Araclar : Yorum

Girl Yap

¥ PDF Dosyasi Olugtur

Adobe CreatePDF &
Ueretll abonellkle dosyalar) POF ye dénastran ve dier
dosya tarleriyle kolayca birlestirin,

PDF'ye Dondsturdlecek Dosyan Sec:

Dosya Seg

Surface With Density in Minkowski 3 space

» Dosya Génder

Erdem KOCAKUSAKLI

University of Ankara, Turkey
(Joint with lsmail GOK, University of Ankara, Turkey)

International Congress On Mathematics and Geometry
09 December 2020

Erdem KOCAKUSAKLI | Surface With Density is Minkowski 3 space

Leave Room

Ana \racla TAM METIN-1---§ TAM METIN-2--§ 79¢551d ) Oturum Ag

IMOSGANVOTCE FORKAIYCINLARINS KULLAARAK | INEER | ANE FMDEN
DR ERANSIYEL DENKLEMLERININ WOMS Rl OZUMLER Y Wi Zi00E
JcaL e o L v

2020-12-09 1 3458: 36



"
Ar raclar T 11 AM METI 551d Oturum Ag K

& ) =
depending on the h-lorgén-\r’oyce po\ynomila.\s in the form I : 3 :
N g :
yy(x) = Z y By(X) (3) 0 v N
n=0 D v Il
The second aim of this study is to obtain better approximate solution by using the - “1
residual error estimation technique as 0 it v
Y (x) = yu(x) + ey (x) (4)
h] 1
where v Doaan.
M L
v eyy(x) = Z day B,(x). (5) »
n=0
In the Equations (3)45), N and M are any c%osen positive integers such that M =
N = 2 and a,, a,, are the unknown Morgan-Voyce coefficients. Also, B, (x) are the
Morgan-Voyce polynomials defined by (Stoll & Tichy, 2008)
%

Sk ’
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Also, the recurrence relationship of Morgan-Voyce polynomials 8, (x) is (Stoll &
Tichy, 2008)

B,(x) = (x + 2)B,_y(x) = By _z(x)n 2 2

Fundemental Definitions and Theorems

Construction of the method
: 55’ [0, 4%] Reproducing kernel space

Integrating this equation by parts for four times, we have

h.R, >ss0.42) = (O)R,(0) + W ()R} (0) + H"(0)R}(0) — K (O)RY”(
(47)

+ KOam)RY (47) - HO()RY(0) - ' (4)RL
-H(0)RP(0) + H (4m)RY ) (4) — H(0)R) (0)

. 4
ham)R )+ HORT(0)+ [ hoOR?

Because of the conditions and by making necessary calculations we
reach the reproducing kernel function follows as:
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Example 10

By Theorem 9, every solution f(z) 3 0 of the differential
b equation
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¥ Preliminanes

Let A(z), B(z) be entire functions such that for real constants
A 1,01, 00 where A > 0,17 > 0, and 6 < 05, we have

M(n+1-a)|B(z)| > exp{(1+0(1))A|"}

Mn+1-75)
f(n+1-a)

IA(2) exp{o(1) "} )

asz— o0 infl < argz < 6. Then every solution f# 0 of (7) has
infinite order.
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Obtained Result

Proof of the theorem

o Therefore

) = _/(;h 2 (.1‘2 =+ _1;2) (.\'3 + _1,13 - b) dt

LU o,
/ 2 (1 + _t.v') (a=b)dt>0
JO

/‘F" 2 (.\'2 __Fyz) (,13 +y - rr)dl
.“TZ
2(2+17) (b-a)dt <0,

2020-12-09 15:41:42

2020-12-09 16:00:02




1. INTERNATIONAL CONGRESS ON

MATHEMATICS AND GEOMETRY
9 DECEMBER 2020
ANKARA

CONGRESS PROGRAM

Online (with Video Conference) Presentation
https://us02web.zoom.us/j/81959685121?pwd=TIZhSFBYWWdLM3U3L0V
VYWEYbVRKQT09

IMPORTANT, PLEASE READ CAREFULLY

To be able to make a meeting online, login via https://zoom.us/join site, enter 1D
instead of “Meeting ID or Personal Link Name” and solidify the session.
The Zoom application is free and no need to create an account.
The Zoom application can be used without registration.
The application works on tablets, phones and PCs.
Moderator - responsible for the presentation and scientific discussion (question-
answer) section of the session.

Points to Take into Consideration - TECHNICAL INFORMATION
Make sure your computer has a microphone and is working.
You should be able to use screen sharing feature in Zoom.
Attendance certificates will be sent to you as pdf at the end of the congress.
Requests such as change of place and time will not be taken into consideration in
the congress program.
If you think there are any deficiencies / spelling mistakes in the program, please
inform by e-mail until October 2, 2020 (17:00) at the latest.
(All speakers required to be connected to the session 15 min before the session
starts)
Moderator is responsible for ensuring the smooth running of the presentation,
managing the group discussion and dynamics.
Before you login to Zoom please indicate your name_surname and HALL
number, exp. Hall 1, Kemal SUNAL

VVVY 'V

YV V ¥V ¥V VVVYVY




1. INTERNATIONAL CONGRESS ON MATHEMATICS AND GEOMETRY
9 December 2020

Ankara/ TURKEY

CONGRESS PROGRAM

09.12.2020
Wednesday / 14:00-16:00

(All speakers required to be connected to the session 15 min before the session starts)
Moderator is responsible for ensuring the smooth running of the presentation, managing the group discussion
and dynamics.
Before you login to Zoom please indicate your name_surname and hall number,
exp. Hall 1, Kemal SUNAL

SESSION-1, HALL-1/OTURUM-1, SALON-1

MODERATOR: Assoc. Prof. Dr. Suayip YUZBASI

Meeting ID: 819 5968 5121
Bosil Password: 971390

AUTHOR

Gamze YILDIRIM
Assoc. Prof. Dr. Suayip
YUZBASI

AFFILITION

Akdeniz University

Title

NUMERICAL SOLUTIONS OF THE LINEAR
LANE-EMDEN DIFFERENTIAL EQUATIONS
BY USING THE MORGAN-VOYCE
FUNCTIONS AND RESIDUAL CORRECTIONS

Gamze YILDIRIM
Assoc. Prof. Dr. Suayip
YUZBASI

Akdeniz University

AN OPERATIONAL MATRIX METHOD FOR THE
SYSTEMS OF HIGHER-ORDER LINEAR
FREDHOLM INTEGRO-DIFFERENTIAL

EQUATIONS BY USING THE PELL-LUCAS
FUNCTIONS

Ars. Gor. Elif NURAY
YILDIRIM

Istanbul Commerce
University

ON SOLUTIONS OF A HIGHER ORDER
NONHOMOGENEOUS ORDINARY DIFFERENTIAL
EQUATION WITH a NUMERICAL METHOD

Saada HAMOUDA

University of
Mostaganem, Algeria

LOGARITHMIC DERIVATIVE NEAR A SINGULAR
POINT AND APPLICATIONS IN LINEAR
DIFFERENTIAL EQUATIONS

Dr. FETTOUCH Houari

University of
Mostaganem, Algeria

GROWTH OF LOCAL SOLUTIONS TO LINEAR
DIFFERENTIAL EQUATIONS AROUND AN
ISOLATED ESSENTIAL SINGULARITY

Dr. Habib DJOURDEM

University of Oranl,
Ahmed Benbella.
Algeria

EXISTENCE RESULT OF A FRACTIONAL
DIFFERENTIAL EQUATION OF HADAMARD TYPE
WITH INTEGRAL BOUNDARY VALUE
CONDITIONS

Dr. BEDDANI HAMID

University of
Mostaganem, Algeria

ORDERS OF SOLUTIONS OF FRACTIONAL
DIFFERENTIAL EQUATION

Samira HAMANI
Amouria HAMMOU
Johnny HENDERSON

Universit_e de
Mostaganem

Baylor University

IMPULSIVE FRACTIONAL DIFFERENTIAL
EQUATIONS INVOLVING THE HADAMARD
FRACTIONAL DERIVATIVE

Mohamed GRAZEM

University of
Boumerdes, Algeria

COEXISTENCE OF TWO LIMIT CYCLES FOR A
CLASS OF PLANAR DIFFERENTIAL SYSTEMS

Dr. Naveen Gupta

Lovely Professional
University Phagwara,
India

OPTICAL PHASE CONJUGATION AND ITS
APPLICATIONS

Dr.Noureddine BOUTERAA

University of Oranl,
Ahmed Benbella.
Algeria

STABILITY OF SOLUTIONS OF INITIAL
VALUE PROBLEM FOR A CLASS OF
STOCHASTIC FRACTIONAL DIFFERENTIAL
EQUATION WITH NOISE




1. INTERNATIONAL CONGRESS ON MATHEMATICS AND GEOMETRY

09.12.2020
Wednesday / 14:00-16:00

(All speakers required to be connected to the session 15 min before the session starts)
Moderator is responsible for ensuring the smooth running of the presentation, managing the group discussion

and dynamics.

Before you login to Zoom please indicate your name_surname and hall number,
exp. Hall 1, Alpaslan BOZKURT

SESSION-1, HALL-2/OTURUM-1, SALON-2

MODERATOR: Dr. Ogr. Uyesi Demet BINBASIOGLU
M eeting ID: 819 5968 5121

Zoom

Dr. Erdem KOCAKUSAKLI
Prof. Dr. ismail GOK

AFFILITION

Ankara University

Password: 971390
AUTHOR ‘\

Title

SURFACES WITH DENSITY IN
MINKOWSKI 3-SPACE

Dr. Erdem KOCAKUSAKLI

Ankara University

TUBULAR SURFACES CONSTRUCTED BY
SPHERICAL INDICATRICES

WITH DENSITY

Dr. Ogr. Uygsi Demet
BINBASIOGLU

Gaziosmanpasa University

SOME COMMON FIXED POINT THEOREMS
IN F-METRIC SPACES

Dr. Ogr. Uyesi Lokman BILEN

Igdw University

CONFORMAL AND HOLOMORPHICALLY
PROJECTIVE VECTOR FIELDS ON
COTANGENT BUNDLES

Hatice KARAKAYA
Dog. Dr. Senol KARTAL

Erciyes University

Nevsehir Haci Bektas Veli
University

AYRIK ZAMANLI CAPUTO-FABRIZIO
KESIRSEL MERTEBEDEN LOJISTIK
MODELIN DINAMIK ANALIZI

Hakan AKKUS

Dr. Ogr. Uyesi Rabia Nagehan
UREGEN

Prof. Dr. Engin OZKAN

Erzincan Binali Yildirim
University

CATALAN TRANSFORM OF THE K-
JACOBSTHAL-LUCAS SEQUENCE

Dr. Ogr. Uyesi Rabia Nagehan
UREGEN

Erzincqn Binali Yildirim
Universitesi

A NOTE ON A GENERALIZATION OF
GRADED PRIME IDEALS

Assisit. Prof. Dr. Valdete Loku
Prof. Dr. Naim L. Braha

University of Applied
Sciences Ferizaj, Kosova

University of Prishtina,
Kosova

STATISTICAL KOROVKIN AND
VORONOVSKAYA TYPE THEOREM
FOR THE CESARO SECOND-ORDER

OPERATOR OF FUZZY NUMBERS

Assoc. Prof. Dr.
NEENA GEORGE

ANNA

GVM's Dr. Dada Vaidya
College of Education, India

MATHEMATICS EDUCATION
CREATING FEAR AND
MISCONCEPTION

Ryan Jay Bernales Gumban
Denis Abao Tan

Malinao High School
Extension- Gastav Campus,
Philippines

Central Mindanao University,
Philippines

STUDENTS’ MATHEMATICS
PERFORMANCE, ENGAGEMENT AND
INFORMATION AND
COMMUNICATION TECHNOLOGY
COMPETENCIES IN AFLIPPED
CLASSROOM ENVIRONMENT




CONTENT

CONFERENCE ID I

SCIENTIFIC COMMITEE II

PHOTO GALERY II1

CONFERENCE PROGRAM IV

CONTENT Vv
PROCEEDINGS BOOK

Author Title

Hatice KARAKAYA DYNAMICAL ANALYSIS OF DISCRETE TIME

Senol KARTAL LOGISTIC MODEL WITH CAPUTO-FABRIZIO

FRACTIONAL ORDER DERIVATIVE

Hakan AKKUS CATALAN TRANSFORM OF THE K-

Rabia Nagehan UREGEN JACOBSTHAL-LUCAS SEQUENCE

Engin OZKAN

Demet BiNBASIOéLU SOME COMMON FIXED POINT THEOREMS IN

Ryan Jay Bernales Gumban
Denis Abao Tan

Naveen Gupta

Lokman BILEN

Houari FETTOUCH

Gamze YILDIRIM
Suayip YUZBASI

F-METRIC SPACES

STUDENTS” MATHEMATICS PERFORMANCE,
ENGAGEMENT AND INFORMATION AND
COMMUNICATION TECHNOLOGY
COMPETENCIES IN A FLIPPED CLASSROOM
ENVIRONMENT

OPTICAL PHASE CONJUGATION AND ITS
APPLICATIONS

CONFORMAL AND HOLOMORPHICALLY
PROJECTIVE VECTOR FIELDS ON COTANGENT
BUNDLES

GROWTH OF SOLUTIONS OF A CLASS OF
LINEAR DIFFERENTIAL EQUATIONS AROUND
AN ISOLATED ESSENTIAL SINGULARITY

NUMERICAL SOLUTIONS OF THE LINEAR
LANE-EMDEN DIFFERENTIAL EQUATIONS BY
USING THE MORGAN-VOYCE FUNCTIONS
AND RESIDUAL CORRECTIONS

Page

17



Suayip YUZBASI
Gamze YILDIRIM

ANNA NEENA GEORGE

Valdete Loku
Naim L. Braha

Elif NURAY YILDIRIM

Amouria HAMMOU

Mohamed GRAZEM

Erdem KOCAKUSAKLI
Ismail GOK

Erdem KOCAKUSAKLI

BEDDANI HAMID

Habib DJOURDEM

Saada HAMOUDA

Rabia Nagehan UREGEN

Noureddine BOUTERAA

AN OPERATIONAL MATRIX METHOD FOR THE
SYSTEMS OF HIGHER-ORDER LINEAR
FREDHOLM INTEGRO-DIFFERENTIAL
EQUATIONS BY USING THE PELL-LUCAS
FUNCTIONS

MATHEMATICS EDUCATION CREATING FEAR
AND MISCONCEPTION

STATISTICAL KOROVKIN AND
VORONOVSKAYA TYPE THEOREM FOR THE
CESARO SECOND-ORDER OPERATOR OF
FUZZY NUMBERS

ON SOLUTIONS OF A HIGHER ORDER
NONHOMOGENEOUS ORDINARY
DIFFERENTIAL EQUATION WITH a
NUMERICAL METHOD

IMPULSIVE FRACTIONAL  DIFFERENTIAL
EQUATIONS INVOLVING THE HADAMARD
FRACTIONAL DERIVATIVE

COEXISTENCE OF TWO LIMIT CYCLES FOR A
CLASS OF PLANAR DIFFERENTIAL SYSTEMS

SURFACES WITH DENSITY IN MINKOWSKI 3-
SPACE

TUBULAR SURFACES CONSTRUCTED BY
SPHERICAL INDICATRICES WITH DENSITY

ORDERS OF SOLUTIONS OF FRACTIONAL
DIFFERENTIAL EQUATION

EXISTENCE RESULT OF A FRACTIONAL
DIFFERENTIAL EQUATION OF HADAMARD
TYPE WITH INTEGRAL BOUNDARY VALUE
CONDITIONS

LOGARITHMIC DERIVATIVE NEAR A
SINGULAR POINT AND APPLICATIONS IN
LINEAR DIFFERENTIAL EQUATIONS

A NOTE ON A GENERALIZATION OF GRADED
PRIME IDEALS

STABILITY OF SOLUTIONS OF INITIALVALUE
PROBLEM FOR A CLASS OF STOCHASTIC
FRACTIONAL DIFFERENTIAL EQUATION
WITH NOISE

32

47

48

50

51

59

64

65

66

69

70

71

72



AYRIK ZAMANLI CAPUTO-FABRIiZiO KESIRSEL MERTEBEDEN LOJISTiK
MODELIN DINAMIK ANALIZi

DYNAMICAL ANALYSIS OF DISCRETE TIME LOGISTIC MODEL WITH CAPUTO-
FABRIZIO FRACTIONAL ORDER DERIVATIVE

Hatice KARAKAYA
Doktora 6grencisi, Erciyes tiniversitesi Fen Bilimleri Enstitlisii Matematik Anabilim Daly,

Kayseri, Turkiye

ORCID NO: 0000-0002-0161-3752

Dog. Dr. Senol KARTAL
Nevsehir Hac1 Bektas Veli Universitesi Egitim Fakiiltesi Matematik Anabilim Dal,

Nevsehir, Tiirkiye

ORCID NO: 0000-0003-1205-069X

OZET

Bu c¢alismada, helianthus bitkisinin yillik biliylime oranini tanimlayan kesirsel mertebeden
Caputo-Fabrizio lojistik modeli ele alinmistir. Modele ilk olarak Iki Adiml1 Adams-Bashforth
Metoduna dayali bir ayriklastirma islemi uygulanmis ve ardindan bir fark denklem sistemi elde
edilmistir. Ayrik sistemin pozitif denge noktasinin kararlilik kosullari, Schur-Cohn kriteri
kullanilarak belirlenmistir. Dahasi, ¢atallanma analizi ile ayrik sistemin pozitif denge noktasi
civarinda Neimark-Sacker catallanmasi oldugu gosterilmistir. Neimark-Sacker ¢atallanmasinin
yonii ve kararlilig1, normal form ve merkez manifold teorisi kullanilarak belirlenmistir. Ayrica
maksimum Lyapunov iistellerinin hesaplanmasiyla sistemde kaotik davranislarin varlig
arastirilmistir. Parametre degerleri, biyolojik gerceklerle uyumlu olmasi i¢in literatiirde verilen
deneysel verilerden secilmistir. Son olarak, teorik sonuglarin dogrulugunu goéstermek ig¢in
nlimerik simiilasyonlar kullanilmastir.

Anahtar Kelimeler: Caputo-Fabrizio Kesirsel Merebeden Tiurev, Lojistik Diferansiyel
Denklem, Tki Adimli Adams-Bashfort Metodu, Neimark-Sacker Catallanmasi

ABSTRACT

In this paper, the Caputo-Fabrizio fractional order logistic model which describes annual
growth rate of the helianthus plant is considered. Firstly, a discretization process based on Two
Step Adams-Bashforth Method is applied to the model and then we obtain a system of
difference equations. Stability conditions of positive equilibrium point of the discrete system
are determined by using Schur-Cohn criterion. Morever, we also deal with the bifurcation
analysis and show that the discrete system undergoes Neimark-Sacker bifurcation around the
positive equilibrium point. The direction and stability of the Neimark-Sacker bifurcation are

PROCEEDINGS BOOK




determined by using the normal form and center manifold theory. We also investigate the
chaotic behavior of the system by calculating the maximum Lyapunov exponents. Parameter
values are selected from experimental data that is given in the literature in order to be
compatible with biological fact. Finally, numerical simulations are used to demonstate the
accuracy of theoretical result.

Keywords: Caputo-Fabrizio Fractional Order Derivative, Logistic Differential Equation, Two
Step Adams-Bashforth Method, Neimark-Sacker Bifurcation
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K-JACOBSTHAL-LUCAS DIZiSININ KATALAN DONUSUMU
CATALAN TRANSFORM OF THE K-JACOBSTHAL-LUCAS SEQUENCE
Hakan AKKUS

Yiiksek Lisans Ogrencisi, Erzincan Binali Yildirim Universitesi Fen-Edebiyat Fakiiltesi
Matematik Bolimu, Erzincan, Turkiye

(Sorumlu Yazar)
ORCID NO: 0000-0001-9716-9424
Dr. Ogr. Uyesi Rabia Nagehan UREGEN

Erzincan Binali Y1ildirim Universitesi Egitim Fakiiltesi Matematik ve Fen Bilimleri Egitimi
B6lima, Erzincan, Tirkiye

ORCID NO: 0000-0002-6824-4752
Prof. Dr. Engin OZKAN
Erzincan Binali Yildirim Universitesi Fen-Edebiyat Fakiiltesi Matematik B6limii, Erzincan,
Turkiye
ORCID NO: 0000-0002-4188-7248
OZET

Bu ¢alismada k-Jacobsthal-Lucas dizisinin Sy, ,, catalan doniisiimiiniin CSy, ,, tanimlanmustir k-
Jacobsthal-Lucas dizisinin Sy, ,, catalan doniisiimiinii elde edilmistir. Ayrica CSy, ,doniistimii alt
ucgen matris olan Catalan matrisi C ile n x 1 tipindeki S), matrisinin ¢arpimi olarak yazilmistir
ve bazi k-Jacobsthal-Lucas sayilarinin Hankel doniistimii bulunmustur.

Anahtar Kelimeler: k-Pell dizisi, k- Lucas dizisi, k-Fibonacci dizisi, Catalan Doniisiimii,

Hankel Dontistimii

ABSTRACT

In this study, CS),,, of S, , Catalan transformation of k—Jacobsthal-Lucas sequence is defined.
Skn Catalan transformation of k—Jacobsthal-Lucas Sy ,, sequences is obtained.In addition the
transformation of CSy ,, is written as the product of the Catalan matrix C, which is the lower
triangular matrix, and the S, matrix of type n x 1, and the Hankel transformations of some k-
Jacobsthal-Lucas numbers has been found.

Keywords: k-Pell sequences, k-Lucas sequences, k-Fibonacci sequences, Catalan Transform,
Hankel Transform
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SOME COMMON FIXED POINT THEOREMS IN F-METRIC SPACES

F-METRIK UZAYLARDA BAZI ORTAK SABIT NOKTA TEOREMLERI
Dr. Ogr. Uyesi Demet BINBASIOGLU
Gaziosmanpasa Universitesi Fen Edebiyat Fakiiltesi Matematik Bolimdi, Tokat, Tiirkiye
ORCID NO: 0000-0001-7041-5277
OZET

Son zamanlarda, Jleli ve Samet tarafindan | metrik uzay kavrami tanitilmis ve bu uzaylarin
dogal topolojisi tantmlanmistir. Ayrica bu uzaylarda Banach sabit nokta prensibinin yeni bir
versiyonu verilmistir. Bu ¢alismamizda | metrik uzaylarda bazi ortak sabit nokta teoremleri

kanitlanmustir.

Anahtar Kelimeler : F Metrik Uzay, Biiziilme Doniistiimii, Ortak Sabit Nokta Teoremi

ABSTRACT

Lately, the concept of F metric space has been introduced and have been defined a natural
topology in this spaces by Jleli and Samet. Also a new version of Banach contraction principle
has been given in the F metric spaces. In this paper, we prove some common fixed point
theorems in the spaces.

Keywords: F Metric Space, Contraction Mapping, Common Fixed Point Theorem
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STUDENTS’ MATHEMATICS PERFORMANCE, ENGAGEMENT AND
INFORMATION AND COMMUNICATION TECHNOLOGY COMPETENCIES IN A
FLIPPED CLASSROOM ENVIRONMENT

Ryan Jay Bernales Gumban

Malinao High School Extension- Gastav Campus, Gastav, Banisilan, Cotabato, Department of
Education, 9416 Philippines

Denis Abao Tan
Central Mindanao University, University Town, Musuan, Bukidnon, 8710 Philippines
ABSTRACT

An investigation was conducted to ascertain the effectiveness of the Flipped Classroom in the
mathematics performance, engagement, and ICT competencies of the Grade 9 students of
Malinao High School Extension- Gastav Campus. Specifically, the study sought to: (1) identify
the level of mathematics performance of the students when exposed to flipped classroom; (2)
determine the level of students’ engagement in Mathematics with the use of flipped classroom;
(3) ascertain the level of students’ ICT competencies with the use of flipped classroom; (4)
differentiate the level of Mathematics performance of the students with the integration of
flipped classroom; (5) find out if there is a significant difference in students’ level of
engagement in Mathematics with the integration of flipped classroom; (6) distinguish if there a
significant difference in students’ ICT Competencies with the integration of flipped classroom.

A one shot pretest-posttest was conducted to assess the effectiveness of the flipped Classroom.
Results showed that students exposed to Flipped classroom have significantly higher
performance in terms of posttest and retention test scores. Also, a significant difference in the
students’ mathematics engagement and ICT competencies before and after the intervention was
found. Students gained basic knowledge of ICT competencies based on the increase in the over-
all mean scores from the pre-test to post test. They acquired basic skills after exposure in a
Flipped classroom. Moreover, there was a significant difference in the affective and cognitive
engagement of students in Mathematics when exposed to the flipped classroom. Students were
significantly engaged in both cognitive and affective aspects while learning Mathematics.
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OPTICAL PHASE CONJUGATION AND ITS APPLICATIONS

Dr. Naveen Gupta
Lovely Professional University Phagwara, India
ABSTRACT
This paper presents a review on a novel nonlinear effect known as optical phase conjugation.
Emphasis is put on providing fundamental aspects of this phenomenon by avoiding complicated
mathematics. Various methods like four wave mixing and stimulated Brillouin scattering to

produce optical phase conjugation have been discussed in detail. Various applications of this
phenomenon also have been discussed.

Keywords: Phase conjugation, Stimulated Brillouin scattering, Four wave mixing.
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KOTANJANT DEMETTE KONFORMAL VE HOLOMORFIK PROJEKTIF
VEKTOR ALANLARI

CONFORMAL AND HOLOMORPHICALLY PROJECTIVE VECTOR FIELDS ON
COTANGENT BUNDLES

Dr. Ogr. Uyesi Lokman BILEN
Igdir Universitesi Fen Edebiyat Fakiiltesi Matematik Boliimii, [gdur, Tiirkiye
ORCID NO: 0000-0001-8240-5359
OZET

(M, V) diferensiyellenebilir bir manifold, V, M Uzerinde bir lineer konneksiyon ve T*M de
(M,V) nin RV Riemann genislemesi metrigine sahip kotanjant demeti olsun. Sunulan bu
caligmada kotanjant demette Riemann genislemesi metrigine gore konformal ve holomorfik
projektif vektor alanlarinin detayli siniflandirmasi ve bu vektor alanlari ile ilgili bazi geometrik
sonuclar verilmistir.

Anahtar Kelimeler: Konformal vektor alani, holomorfik projektif vektor alani, Riemann
genislemesi.

ABSTRACT

Let (M, V) be a differentiable manifold with lineer connection V and T*M it’s cotangent bundle
with Riemannian extension metric RV. In the present paper we presents detailed classification
of conformal and holomorphically projective vector fields on cotangent bundle with respect to
the Riemannian extension and some geometric results related to them.

Keywords: Conformal vector field, holomorphically projective vector field, Riemannian
extension.
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GROWTH OF SOLUTIONS OF A CLASS OF LINEAR DIFFERENTIAL
EQUATIONS AROUND AN ISOLATED ESSENTIAL SINGULARITY

Houari FETTOUCH

Laboratory of Pure and Applied Mathematics, University of Mostaganem, UMAB, Algeria.

ABSTRACT

In this paper we study the growth of solutions of certain class of linear differential equations
around an isolated essential singularity point. For that, we transform by making use a
conformal mapping certain results from the complex plane to a neighborhood of a singular
point. We will see that there are a large similarities between the complex plane results and this
investigation.

INTRODUCTION AND STATEMENT OF RESULTS

Throughout this paper, we assume that the reader is familiar with the fundamental results and
the standard notations of the Nevanlinna value distribution theory of meromorphic function

on the complex plane C and in the unitdisc D = {z eC: |z| <1} (see [haym, yang]). The

importance of this theory has inspired many authors to find modifications and generalizations
to different domains. Extensions of Nevanlinna Theory to annuli have been made by [bieb,
khri, kond, korh, mark]. In this paper, we concentrate our investigation near an isolated

essential singular point. We start to give the appropriate definitions. Set C=Cu {oo} and
suppose that f(z) is meromorphic in , Where . Define the counting

function of by

N, (r, f):—jn(t’ f)—tn(oo, f)dt—n(oo, f)logr,

where n(t, f) counts the number of poles of f(z) inthe region {zeC: t<[z-z[}u oo}

each pole according to its multiplicity; and the proximity function by

f(z0 —re””]dgo.

1 2z
mzl)(r,f)=gjln+
0

The characteristic function of  is defined in the usual manner by

T, (r,f)=m, (r, f)+N, (r, f)

In addition, the order of meromorphic function f(z) near z, is defined by
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_ log" T, (r, f)
or(f,2)= limsup——

For an analytic function f(z) in C—{z,}, we have also the definition

_ log"log” M, (r, f)
ou(f.2:)= limsup ~logr

where M, (r, f)=max{f(z) : [z-2z,|=r}

For example, the function f(z)= exp{ } where neN\{0}, we have

1
(Zo _Z)n
M, (r,f)= exp{rin} ,and then &, (f,z,)=n . We have also

2z
TZO(r,f):mZO(r,f)=i£ In* f(zo—re‘“’}d(p:rin, andso o, (f,z,)=n .

(t-2)

For the function f(z)= exp{ } ,we have o(f,1)=1 while in the unit disc we have

o, (f)=0y,(f)=0.
We see that in the unit disc we have o, (f)< o, (f)<o;(f)+1 and in the complex plane
we have o (f)=a,,(f) . Now, how about the relation between o (f,z,) and o, (f,z,)

? Below, in Lemma lem2, we will prove that if f(z) is meromorphic functionin C—{z,}
and g(w)= f(z,—<),then g(w) isameromorphic functionin C and we have
T(R,g)=T,(r, f) ; where R=2%;whichimpliesthat o (f,z,)=0,(f,z,).So, we can

use the notation &(f,z,) without any ambiguity.

By the usual manner, we define the hyper order near as follows:

_ log”log* T, (r, f)
oer(fi20)= fimsup ~logr

_ log* log* log* M, (r, f
azyM(f,zo):Ilrpsoup “togr g )

The linear differential equation

f"+A(z)e™ f'+B(z)e™f =0,
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where A(z) and B(z) are entire functions, is investigated by many authors; see for example

[ozaw,chenl,chen2,gund2]. In [chenl], Chen proved thatif ab=0 and arga =argb or
a=cb (0<c<lorc>1),theneverysolution f(z)=0 of (1) is of infinite order. Recently,

the second author proved results similar to (1) in the unit disc concerning the differential
equation

a b

£+ Az)e™ " £+ B(z)e™ " £ =0,

where A(z) and B(z) are analytic in the unitdisc, >0 and arga=argb or a=cb
(0 <c< 1) , see [ham12]. However, the method of [ham12] does not work in general for the
case 0< u<1 :seethe discussion in [nam12]. The case « =1 will be investigated in the

following theorem with certain modifications on A(z) and B(z).
Theorem Let z,,a,b be complex constants such that arga =arghb or a=chb

and  be a positif integer. Let A(z),B(z)£0 be analytic functionsin C—{z,}
with max{c(A,z,),o(B,z,)} <n. Then, every solution f(z)#0 of the differential equation

a b

n

"+ A(z)e™ ™ £+ B(z)e= f =0.

satisfies o(f,z,)=0 with o,(f,z,)=n.

In [frei], Frei proved the following result in the complex plane.

Theorem [frei] If the differential equation
g"+e"g'+cg=0

where ¢ =0 isacomplex constant, possesses a solution g # 0 of finite order, then

c=-k?

where s a positive integer. Conversely, for each positive integer k , the
equation (eql) with ¢=—k? , possesses a solution g which is a polynomial in e of

degree k .

The analogous of this results, near a singular point , is as the following.

Theorem Let ¢ =0, z, be complex numbers. If the differential equation

=]
fro| 1 _ewd__2 Jg, C 4_g

(2o -2)° (-2)) (2 -2

possesses a solution f(z)#0 of finite order o(f,z,)<o then c=—k?,where isan
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integer. Conversely, for each positive integer , the equation (eg2) with ,

possesses a solution  which is a polynomial in of degree

1
Example f,(z)=1+e™™ is asolution of the differential equation

-1
1 2 1
f7+ elod) _ fr f=0.
[(Zo -2) (2, - Z)J (z,-2)°

Example f,(z)=1+4e" +6e* isasolution of the differential equation

-1

1 2 4

f" 4 ele?) _ - f=0.
{(zo -z2)f (zo - z)] (z,-2)

Theorem Let A(z)#0,A(z)..., A ,(z) be meromorphic functionsin C—{z,} satisfying

A()= o] 2

A(z)<exp v , J#0,
2l <on| 2]

where o> 320, u>0, arg(z,-2z)=0¢€(6,,0,)=[0,27) and |z,—z|=r—>0 . Then,
every solution f(z)#0 of the differential equation

fOLA () Y+ +A(2)f' +A(z)f =0,

satisfies o,(f,z,)> .

Similar results to Theorem t3 in the complex plane are given in [bel, gund3].
Theorem Let A,(z)£0,A(z)... A_(z) beanalytic functionsin C-{z,} satisfying
maxio(A,,z,) : j#0j< (A, z,) . Then, every solution f(z)0 of (eq3) satisfies
o,(f,2,)=0c(A,,2,)

Preliminaries lemmas
Throughout this paper, we use the following notations that are not necessarily the same at

each occurrence:

WWW.IZDAS.ORG
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r,>0, >0, y>1, A>0 are real constants.

0 7
E; <(0,r,] that has finite logarithmic measure [~2-dt <o .
0

27
E, [0,27) that has a linear measure zero [ y_.dt=0.
0 2

Lemma [gundl] Let  be a transcendental meromorphic functionin  ,andlet y >1

£ >0 be given real constants; then
i) there exists a set E, — (1,00) that has a finite logarithmic measure and a constant

that depends only on  such that for all R=|w| satisfying R E, , we have

‘ g"(w)
g(w)

< A[T(R,g)logT(R,9)[;

that has a linear measure zero and a constant that

il) there exists a set
such that for all 6 [0,27)\E, there exists a constant R, =R,(6)>0

depends only on

such that for all ~ satisfying argz €[0,27)\E, and r=|z|>R, , we have

g“(w)
g(w)

<[T(R.g)R" logT(R.g)} "

Lemma Let f be a non constant meromorphic functionin C—{z,} and set

g(w)=f(z,—2).Then, g(w) is meromorphicin C and we have

T(R,g):TZOK%, fj.

Remark By Lemma lem2, if f isa non constant meromorphic functionin C—-{z,} and
g(w)= f(z,-%) then o(f,z,)=o(g)
Lemma Let f be a non constant meromorphic function in E—{zo} andlet y>1, &£>0 be

given constants; then

fy

i) there exists aset E; — (0,r,] that has finite logarithmic measure Iltifdt <o anda
0

constant A4 >0 thatdependsonlyon y suchthatforall r= |z - zo| satisfying

re(0,r,]\E; , we have

NWW.IZDAS.ORG
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‘f(k)(Z)
t(2)

i

ii) there exists aset E; —[0,27) that has a linear measure zero and a constant A >0 that

depends only on y such that for all 8 e [0, 27;)\ E, there exists a constant

such that for all  satisfying arg(z—z,)=6 and r=[z—z,<r, , we have
1 k
A[ = TZO(L, fjlogTZO(L, fﬂ (keN)
r v v

Lemma Let hbe a non constant analytic function in C—{z,} of order o(f,z,)>a >0 .

fo
Then, there exists aset F — (0,r,] of infinite logarirhmic measure [%-dt=oco such that
0

forall reF and |h(z)=M,(r.h), we have

log|h(z) > ri“

Lemma [chian] Let A;be meromorphic functionsin Cand f be a meromorphic solution of
(eg3), assuming that not all coefficients are constants. Given a real constant , and

k-1
denoting T(R) == T(R, A, ) , we have
j=0

logm(R, f)<T(R){logRlogT(R)}".

We can transform this result near a singular point as the following.

Lemma Let A; be meromorphic functions in C-{z,} and f bea meromorphic solution of

(eg3) in E—{zo} , assuming that not all coefficients A, are constants. Given a real constant

k—1k-1

,and denoting T, (r) =T, (r,A,)+ X T, (r,A)+O(log%) , we have
i)

logm, (r, f)<T, (r){log%log(TZO (r))}y

Lemma Let A(z) be analytic functionin C—{z,} with o(A z,)<n. Set
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}, ( n>1 isaninteger)

oe)- Aelesa|

,a=a+if =0, z,-z2=re", 5,(p)=acos(np)+ Bsin(ng), and
H={pe0,27): 5

a

(p)=0}, (obviously, H is of linear measure zero). Then for any given

£>0 andforany ¢<[0,27)\H, thereexists r,>0 such that for we have

(i) if 5,(p)>0, then

exp{(l— £)s, (go)rin} <|o(z) < exp{(l+ £)5, ((D)rin}

(ii) if &,(p)<0, then

oxp]1+2)6,0) | <lala) < exp| 1), ()

Using (p8)-(p9) with (13) in (p7), we get

2k
1 A r 1
ol 2 A1 2] ol
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MORGAN-VOYCE FONKSIYONLARINI KULLANARAK LINEER LANE-EMDEN
DIFERANSIYEL DENKLEMLERININ NUMERIK COZUMLERI VE REZIDUEL
DUZELTME

NUMERICAL SOLUTIONS OF THE LINEAR LANE-EMDEN DIFFERENTIAL
EQUATIONS BY USING THE MORGAN-VOYCE FUNCTIONS AND RESIDUAL
CORRECTIONS

Res. Assist. Gamze YILDIRIM

Department of Mathematics, Faculty of Science, Akdeniz University, Tr-07058, Antalya,
Turkey

ORCID NO: 0000-0002-6020-8618
Assoc. Prof. Dr. Suayip YUZBASI
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OZET

Bu calisgmanin amaci, lineer Lane-Emden diferansiyel denklemlerinin yaklasik ¢ézlimlerini,
Morgan-Voyce polinomlar1 yardimiyla bulmaktir. Yontemde, yaklasik ¢oziimlerin matris
temsili ve yaklasik ¢oziimlerin tlirevlerinin matris temsili Morgan-Voyce polinomlarina bagl
olacak sekilde belirlenir. Bu yonteme gore verilen problem Morgan-Voyce katsayilarini i¢eren
bir cebirsel sisteme indirgenmistir. Morgan-Voyce katsayilar1 bu sistem coziilerek elde edilir.
Bu Katsayilar ¢oziim formuna yazilir ve yaklagik ¢oziim Morgan-Voyce polinomlarina bagl
olarak bulunur. Ek olarak, rezidiiel hata fonksiyonu ile bir hata problemi olusturulur ve bu hata
problemi Morgan-Voyce kollokasyon metodu kullanilarak ¢oziiliir. Bu yonteme gore,
problemin tam ¢oziimii bilinmediginde, hatalar yaklasik olarak hesaplanabilir. Bu iki yontem
iki ornek i¢in uygulanir. Sonuglar tablolar ve grafiklerde gosterilir. Bu sonuglara gore,
literatlirdeki diger yontemlere gore daha iyi sonu¢ verdigi gozlemlenir. Dolayisiyla tim
bunlardan yontemin basarili oldugu sdylenebilir. Ayrica, sonuglar Matlab programinda yazilan
kodlar ile elde edilir.

Anahtar Kelimeler: Kollokasyon Noktalar1, Kollokasyon Y 6ntemi, Lane—Emden Diferansiyel
Denklemleri, Morgan-Vorgan polinomlar:

ABSTRACT

The aim of this study is to find approximate solutions of linear Lane-Emden differential
equations with the help of Morgan-Voyce polynomials. In the method, the matrix representation
of the approximate solutions and the matrix representation of the derivatives of the approximate
solutions are determined depending on Morgan-Voyce polynomials. The problem given
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according to this method is reduced to an algebraic system containing Morgan-Voyce
coefficients. Morgan-Voyce coefficients are obtained by solving this system. These coefficients
are written in the solution form and the approximate solution is found based on Morgan-Voyce
polynomials. In addition, an error problem is created with the residual error function and this
error problem is solved using the Morgan-Voyce collocation method. According to this method,
the errors can be approximated when the exact solution to the problem is unknown. These two
methods are applied for two examples. Results are shown in tables and graphs. According to
these results, it is observed that it gives better results than other methods in the literature.
Therefore, it can be said that the method is successful from all these. Also, the results are
obtained with the codes written in the Matlab program.

Keywords: Collocation Method, Collocation Points, Lane—-Emden Differential Equations,
Morgan-Vorgan Polynomials

1. INTRODUCTION

Lane-Emden type equations can be modeled many phenomena such as thermal explosions
(Chambre, 1952), stellar structure (Chandrasekhar, 1967) and the thermal behavior of a
spherical gas cloud, isothermal gas spheres and thermionic currents (Richardson, 1921). There
are many analytical methods for Lane-Emden type equations. However, it is difficult or
impossible to solve analytically. Therefore, numerical methods such as the Legendre wavelets
(‘Yousefi, 2006), the Bessel collocation method (Yiizbas1 & Sezer, 2011), (Yiizbas1 & Sezer,
2013) the Hermite functions collocation method (Parand, Dehghan, Rezaei, & Ghader, 2010),
the variational iteration method (Yildirim & Ozis, 2009), (Dehghan & Shakeri, 2008), the B-
spline method (Caglar & Caglar, 2006), the homotopy perturbation method (Yildirim & Ozis,
2007), (Ramos, 2008), (Chowdhury & Hashim, 2009), the rational Legendre pseudospectral
method (Parand, Shahini, & Dehghan, 2009), the Adomian decomposition method (Wazwaz,
2001), the Pade series method (Vanani & Aminataei, 2010), the nonperturbative approximate
method (Shawagfeh, 1993), and the variational approach method (He, 2003), have been studied.
On the other hand, numerical solutions of high-order linear differential-difference equations
(Turkyilmaz, Giirbiiz, & Sezer, 2016), generalized functional integro-differential equations of
Volterra-Type (Ozel, Kurkcl, & Sezer, 2019) and nonlinear ordinary differential equations with
quadratic and cubic terms (Tarake1, Ozel, & Sezer, 2020) related to Morgan-Voyce polynomials
have been used to solve numerically.

In this paper, we will study the Lane - Emden type differential equations

Lyl =y"(x) + %y'(x) tpy) =gk), 0=x<b 1)

with the conditions
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1
D @y ®©) +hy®®) =2, j=01. @
k=0

Here, while p(x)and g(x) are the defined functions on interval 0<x <b,
a, a;, by and A; are real or complex constants. Also, y©@(x) = y(x) is the function to be
determined.

The first aim of this study is to obtain the approximate solution of the Equation (1)-(2)
depending on the Morgan-Voyce polynomials in the form

N

W) = ) ay By(®) ©

n=0

The second aim of this study is to obtain better approximate solution by using the residual error
estimation technique as

Ynm(x) = yn(x) + ey n(x) (4)
where
M
enn(¥) = ) a3 Bu(¥), ©)
n=0

In the Equations (3)-(5), N and M are any chosen positive integers such that M > N > 2 and
a,, ar are the unknown Morgan-Voyce coefficients. Also, B, (x) are the Morgan-Voyce
polynomials defined by (Stoll & Tichy, 2008)

n

Bn(x) = Z(n:f: 1>xk' (6)

k=0

The recurrence relationship of Morgan-Voyce polynomials B, (x) is (Stoll & Tichy, 2008)
Bn(x) = (x + 2)By—1(x) = Bp_a(x),n = 2
such that the first two Morgan-VVoyce polynomials are By(x) = 1 and B;(x) = x + 2.

Additionally, the Morgan-Voyce polynomials B, (x) are solutions of the differential equation
(Stoll & Tichy, 2008)

x(x +4)B;)(x) +3(x + 2)B,(x) —n(n+ 2)B,(x) =0
2. MORGAN-VOYCE COLLOCATION METHOD

In this section, we write the matrix form of the approximate solution of (3) as

PROCEEDINGS BOOK WWW.IZDAS.ORG




9 DECEMBER 2020
ANKARA, TURKEY

yn(x) = B(x)A (")

where B(x) = [By(x) B;(x) -+ By(x)]andA=[ap a; - ay]T.After, through the
relations  (6), we write the matrix B(x) in (7) as

B(x) = X(x)D @®
where
(1
0 . 0
o
2 3 .
Xx)=[1 x .- xN]andDT = (:J (0)

N+1 N+2 2N +1
i N N-1 0 |
So, we take the first derivative of the matrix form (8) in the form

B'(x) = X'(x)D = X(x)MD 9)

and we take the second derivative of the matrix form (8) in the form

B"(x) = X"(x)D = X(x)M?D (10)
where
0 0 O 0 0 O]
1 00 0 0 O
MT — 2 0 0 0 O

000 - N-1 0O
000 .- 0 NDO

Thus, by using the matrix form (9) and (10), we can write the first derivative of the matrix form

()
yy(x) = B'(x)A = X(x)MD (11)
and we can write the second derivative of the matrix form (7)

yi(x) = B"(x)A = X(x)M2DA (12)
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Thirdly, by substituting the matrix relations (7), (8), (11) and (12) in the Equation (1), we get

the matrix equation
X(x)M2DA +% X(x)MD + p(x)X(x)DA = g(x). (13)

Next, we define the collocation points as
(14)

b—a. ]
i, i=01,...,N

Xi=a+
' N

and by writing these collocation points (14) instead of x in the Equation (13), we obtain as

(15)

follows:
X(x)M2DA + xﬁ X(x)MD + p(x)X(x;)DA = g(x;)
i
or
{XM?D + aXMD + PXD}A = G (16)
where
X = [X(xo) X(x1) X(XN)]T, G= [g(xo) g(xl) g(xN)]T:
_a 0 ese 0
w & p) 0 0
a=10 p= 0: z:v(xl) 0:
E E -'. d . . .
- N_

From here, we can write the matrix equation (16) also as
(17)

WA=G, W=XM2?D+aXMD +PXD; or [W;G].
Then, we write the collocation points (14) in the conditions (2) with the help of (7)-(8), and we

obtain the matrix equation corresponding to the conditions in the form

=01 (18)

Z[aij(O)M"D + by X(b)M*D|A =[4], j

k=0

or
1
U; 4. (19)

UA = 3], U; = > [auXOMHD + by X(BM*D]; or |

k=0
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So, the number of rows of the fundamental matrix system (17) is N + 1 and the number of rows
of the matrix form for the conditions (19) is 2. Hence, we write the N — 1 rows of the system
(17) and the rows of the conditions (19) in a single matrix in the form

i Woo W2 Wo, o Won 5 9(Xg) ]
Wi Wi Wy, o Win ; g(xl)
(W ] = : (20)
Wyoo Wnan Whao 0 Wyon 5 9(Xy)
Upo Up, Up, Up N , 7‘0
L Ui o U, U, Up N : Ay |
Consequently, if rank W = rank[W; G] = N + 1, it can be written
A= (W)1G. (21)

and by solving this system, the coefficients matrix A is found depending on Morgan-Voyce
polynomials.Then, by substituting this matrix A in the Equation (3), we determine Morgan-
Voyce polynomial solutions. Additionally, when, |W| = 0, if rank W = rank[W;G] < N +
1, then we may find a particular solution. Otherwise if rank W # rank|[W; G|, then we can’t
find a solution.

3. RESIDUAL CORRECTION AND ERROR ESTIMATION

In this section, we will construct an error estimation method which depends on the residual
error function. Also, we will develop Morgan-Voyce polynomial solutions with the help of this
function. With yy (x) is the Morgan-Voyce polynomial solution of the problem (1)-(2), let's
deal with the residual function as

Ry(x) = Llyy(x)] — g(x) (22)
Then, we can write

(L @] = 3700 + =3P () + Py ) = g@) + Ru(0),

S w o (23)
> (4O + @) =4, j=01.

k=0

Thus, we can constitute the error problem with the help of (1)-(2)-(22) as
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Lley(x)] = Lly(x)] — Llyn(x)] = —Ry(x)

1
. (24)
> (auel(0) + bel ) =0, j=01.
k=0

or

eP () + 2P (x) + p(Xey(x) = —Ry(x),
X

1 9] k) (25)
> (axef(0) + be ) =0, j=01.

\&=

Here, we can define the actual error function ey (x) in the form

en(x) = y(x) — yn (%) (26)

Hence, ey 5 (x) is the estimated error function and we use this function when the exact solution
of the problem (1)-(2) is unknown. On the other hand, we solve the problem (24) by using the
method in Section 2 in the form

M

enw(¥) = ) a3 Ba(¥), @)

n=0

Also, we define the improved approximate solution as yy »(x) = yy(x) + ey (x) and we
calculate the error of this improved approximate solution as

Eyu(x) = |y(x) - YN,M(x)|- (28)

4. APPLICATIONS OF THE METHOD

In this section, we will apply the methods discussed in Sections 2 and 3 on 2 examples and
show the results in tables and graphs. We will also make comparisons with the results of other
methods. Matlab is used for all calculations.

Example 4.1. Firstly, we deal with the Lane-Emden problem
2

n 1 ! — 8
y (x)+;y(x)—(m) 0<x<1 (29)
y()=0, y'(0)=0

7
8—x2

Here, the exact solution of the problem (29) is y(x) =2 log( ) a=1, P=0 and

2
gx) = (8—8x2) . By applying the method in Section 2 for N = 4, we write the approximate

solution as
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4
Y = ) ay By(®) (30
n=0

and we calculate the set of collocation points (14) for « = 0.001 and b = 1 as

{ 1 418 501 751 1} (31)
Xog = , X = , Xy = ,Xg = , Xq =
710007 " 1667°7% " 1001 '7* " 1001 "*
Hence, the fundamental matrix equation is
WA =G. (32)
or
0 1000 4004 10024009 / 1000 1255254501/ 62500 1
0 4000/1003 20012/1003 265342081/4012000 183369189027 /1003000000 1469 /1446
W=|0 2000/1001 12004/1001 97066009 /2002000 41042012001/ 250250000 |,G=| 146/137 (33)
0 4000/3001 28004/3001 529150009/12004000 521219027001/3001000000 1451/1254
0 1 8 43 192 64 /49
and for conditions, we have
1 3 8 21 55 0
U{o 14 10 20}’)\:[0} (34)

Then, we write the second row of the matrix W and the matrix U in a single matrix as

0 1000 4004 10024009 /1000 1255254501/ 62500 1
0 4000/1003 20012/1003 265342081/4012000 183369189027 /1003000000 1469 /1446
W=|0 2000/1001 12004/1001 97066009/2002000 41042012001/ 250250000 |,G=| 146/137 (35)
1 3 8 21 55 0
0 1 4 10 20 0

Hence, we solve the system [W; G] in Matlab and so we obtain the matrix of coefficients A as
A=[1392/817 -973/534 1435/2017 -146/1071 100/5891] . (36)

Thus, the Morgan-Voyce polynomial solution is

ya(x) = 0.01697503613758x* — 5.209000391975185¢ — 04x3

37
+ 0.250001166624955x% — 0.266455302723344 (37)

And the actual error function becomes
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e4(x) = 0.00950388237888242x3 + 0.249978678764659x2
+ 4.33680868994202e — 19x — 0.259482561143542

38
; (38)
~2log <8 — xz)'
Now, we constitute the error problem
eP(x) + 1o (x) = —R,(x)
4 x 4 4 ) (39)
e7(0) = 0,e,(1) = 0
where
@ 1 @ ’
Ry() = 3000 + -y () - (8 - x2> | (40)

Then, by applying the method in Section 3, we solve the error problem (39) for M = 6 and so
we can obtain the estimated error function, the improved approximate solution and the
improved error function. The exact solution of the system (29), Bessel polynomial solution,
Morgan-Voyce polynomial solution, improved Bessel polynomial solution and improved
Morgan-Voyce polynomial solution are given in Table 1. The actual error function of the
system (29), the estimated error function and the improved error function are given for N =
7and M = 10 in Table 2 and Figure 1 at different points for the Bessel and Morgan-Voyce
methods. In Table 3, the actual error functions of the system (29) are given for different N
values. From all these results, it can be said that the higher the value N, the better results are
obtained and the method is very effective. In addition, although there is not much difference
between the actual error results compared to the comparison made with the Bessel method
(Yiizbast & Sezer, 2013), when we look at the improved error results, it is seen that the
presented method is more effective.

Tablo 1 The exact solution, the approximate solution and the improved approximate solution
of the system (29)

x; Exact Solution Bessel polynomial solution Morgan-Voyce
(Yiizbas1 & Sezer, 2013) polynomial solution

y(x;) y7(x;) y7(x;)
0 —0.26706278524904525 —0.26706118400745205 -0.26705976695773307
0.2 -0.25703770160195668 —0.25703613506200951 -0.25703467401943167
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0.4

0.6

0.8

0.2

0.4

0.6

0.8

Tablo

0.2

0.4

0.6

0.8

-0.22665737061400635
-0.17497490824623164
-0.10029956737094313
0

Exact Solution

y(x;)
—0.26706278524904525
-0.25703770160195668
-0.22665737061400635
-0.17497490824623164
-0.10029956737094313

0

—0.22665581293982964

—0.17497335588303395
—0.10029801545556499
—0.16197980456933e—15

Improved
polynomial
(Yiizbas1 & Sezer, 2013)

¥7,10(x:)
—0.26706277509905801
—0.25703769146757538
—0.22665736048447666
—0.17497489811938738
—0.10029955723627511

—0.14493072540699¢—15

Bessel
solution

-0.22665434134952904

-0.17497187877953834

-0.10029654003433037

0

Improved Morgan-Voyce

polynomial solution

¥7,10(x:)
-0.26706277509905738
-0.25703769146757476
-0.22665736048447604
-0.17497489811938671
-0.1002995572362745

0

2 The actual errors, the estimated errors and improved errors of the system (29)

The actual errors for Theestimated errorsfor The improved errors for

PM

e7(x;)
3.0183e-06
3.0276e-06
3.0293e-06
3.0295e-06

3.0273e-06
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PM

e710(x;)

3.0081e-06

3.0174e-06

3.0191e-06

3.0193e-06

3.0172e-06

PM

E710(xi)

1.0150e-08

1.0134e-08

1.0130e-08

1.0127e-08

1.0135e-08
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0

The actual errors for The estimated errors for

(Yiizbast
2013)

&  Sezer,

e7(x;)

1.6012e—-006

0.2 1.5665e—006

0.4 1.5577e—006

0.6 1.5524e—-006

0.8 1.5519e—-006

1

1.6198e—-016

(Yiizbas1 & Sezer, 2013)

e710(x;)

1.5911e-006

1.5564e—006

1.5475e—006

1.5422e—006

1.5418e—006

8.3009e—020

Tablo 3 The actual errors of the system (29)

Xi

0.2

0.6

0.8

The actual errors for The actual errors for

PM

es(x;)

6.0748e-04

6.0544e-04

6.0348e-04

6.0748e-04

5.3129¢-04

0
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PM

e7(x;)

3.0183e-06

3.0276e-06

3.0293e-06

3.0295e-06

3.0273e-06

0

The improved errors for
(Yiizbast & Sezer, 2013)

E710(x;)

1.0150e—-008

1.0134e—-008

1.0130e—008

1.0127e—-008

1.0135e—008

1.4494e—016

The actual errors for PM

e2(x;)

2.5208e-10

2.5178e-10

2.5168e-10

2.5162¢-10

2.5158e-10

0
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Figure 1 The actual error, the estimated error and improved error of the system (29)

Example 4.2. Secondly, we deal with the Lane-Emden problem

2

" P — 2 3

y (x)+xy(x)+y(x)—6+1ZX+x X g<x<1 (41)
y0)=0, ¥(0)=0

Here, the exact solution of the problem (29) is y(x) = x? +x3, a =2, P=1and g(x) =
6 + 12x + x? + x3. The actual error, the estimated error and the improved error of the system
(41) are given for N = 5and M = 8 in Table 4 and Figure 2. From all these results, it can be
said that the estimated errors very close to actual errors and improved errors give better results
than actual errors and according to the method discussed in Section 3 the method is effective.
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Figure 2 The absolute error of the system (41)

Tablo 4 The actual errors, the estimated errors and improved errors of the system (41)

Xi

0.2

0.4

0.6

0.8

The actual errors for The estimated errors The improved errors for

PM

es(x;)
0
4.58717222697e-18
1.15388333652e-17
8.97752291734e-18
5.9154975339%-17

3.9388474237e-16
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for PM

esg(x;)
0
4.58717222697e-18
1.15388333652e-17
8.97752291734e-18
5.9154975339%-17

3.9388474237e-16

PM

Esg(x;)
0
1.45212328405e-34
2.372568381e-34
1.91800258528e-34
1.96795990081e-33

4.91666451354¢e-32
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5. CONCLUSIONS

In this study, the Morgan-Voyce collocation method was applied to numerically solve the linear
Lane-Emden equations. For this purpose, the problem (1) - (2) is transformed into an algebraic
equation system containing the unknown coefficients of Morgan-Voyce series. By solving this
system, Morgan-Voyce coefficients were determined and thus approximate solutions were
obtained according to Morgan-Voyce polynomials. The method is applied in Section 4. Thus,
it is understood whether the presented method is effective or not. When the results are
examined, it can be said that the method is very effective. After making the necessary
arrangements, the method can be developed for the nonlinear Lane — Emden equations.
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OZET

Bu calismada, lineer Fredholm integro-diferansiyel denklem sistemlerini sayisal olarak ¢6zmek
icin etkili bir algoritma kurulacaktir. Lineer Fredholm integro-diferansiyel denklem
sistemlerinde ¢oziimleri sayisal olarak arariz ¢linkii bazen tam ¢6ziim yoktur veya tam ¢éziimii
elde etmek zordur. Bu calismanin amaci, lineer Fredholm integro-diferansiyel denklem
sistemlerinin Pell-Lucas polinomlarina bagl olarak yaklasik ¢éziimlerini bulmaktir. Yo6ntem,
yaklagik ¢oziimiin matris temsillerini, bu yaklasik ¢6ziimlerin tiirevlerinin matris temsillerini
ve bu yaklasik ¢coziimlerin integrallerinin matris temsillerini igerir, ki bu yaklasik ¢oziimler de
Pell-Lucas serilerine baglidir. Bu yonteme gore verilen problem, Pell-Lucas katsayilarini igeren
cebirsel bir sisteme indirgenir. Bu sistem c¢o6zilerek Pell-Lucas katsayilar1 elde edilir. Bu
katsayilar ¢oziim formunda yazilir ve yaklasik ¢6ziim Pell-Lucas polinomlarina bagli olarak
bulunur. Son olarak yontem uygulanir. Sonuglar tablolar ve grafiklerde gosterilir. Buna gore,
mevcut yontemle elde edilen yaklasik ¢oziim, tam ¢oziime ¢ok yakindir. Sonuglar incelenerek
yontemin basarili oldugu sdylenebilir. Ayrica, sonuglar Matlab programinda yazilan kodlar ile
elde edilmistir.

Anahtar Kelimeler: Fredholm Integro-Diferansiyel Denklemleri, Kollokasyon Noktalari,
Kollokasyon Yoéntemi, Pell-Lucas Polinomlari

ABSTRACT

In this study, an effective algorithm will be established to numerically solve the systems of
linear Fredholm integro-differential equations. In the systems of linear Fredholm integro-
differential equation, we look for solutions numerically because sometimes there is no exact
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solution or it is difficult to get the exact solution. The aim of this study is to find the approximate
solutions of the systems of linear Fredholm integro-differential equation depending on the Pell-
Lucas polynomials. The method includes the matrix representations of approximate solution,
the matrix representations of the derivatives and the matrix representations of the integrals of
this approximate solution, which depend on the Pell-Lucas series. According to this method,
the given problem is reduced to an algebraic system containing Pell-Lucas coefficients. Pell-
Lucas coefficients are obtained, by solving this system. This coefficients are written in the
solution form and the approximate solution is found depending on the Pell-Lucas polynomials.
Finally, the method is applied. The results are shown in tables and graphs. Accordingly, the
approximate solution obtained by the present method is very close to the exact solution. By
examining the results, it can be said that the method is successful. Also, results are obtained
with the codes written in the Matlab program.

Keywords: Collocation Method, Collocation Points, Fredholm Integro-Differential Equations,
Pell-Lucas Polynomials

1. INTRODUCTION

Lately, it is very common in science and engineering to model problems through differential
equations and systems of differential equations (Biazar, Tango, Babolian, & Islam, 2003),
(Piqueira & Araujo, 2009), (Lutambi, Penny , Smith, & Chitnis, 2013), (Momoniat & Harley,
2011), (Sprott, 2005), (Ghadikolaei, Yassari, Sadeghi , Hosseinzadeh, & Ganji, 2017),
(Dogonchi, Hatami, Hosseinzadeh, & Domairry, 2015), (Ghadikolaei, Hosseinzadeh, Yassari,
Sadeghi, & Ganji, 2017), (Atouei, ve digerleri, 2015), (Hatami, Hosseinzadeh, Domairry, &
Behnamfar, 2014). Since it is not always possible to calculate analytical solutions of these
equations or systems of equations, many numerical methods have been developed (Ghadikolaei,
Hosseinzadeh, Yassari, Sadeghi, & Ganji, 2017), (Atouei, ve digerleri, 2015), (Hatami,
Hosseinzadeh, Domairry, & Behnamfar, 2014), ( Akyuz & Sezer, 2003), (Gokmen & Sezer,
2013), (Pandey & Kumar, 2012), (Khanian & Davari, 2011), (Oztiirk, 2018), (Rabbani & Zarali,
2012), (Akylz-Dascioglu & Sezer, 2005), (Yalginbas, Sezer, & Sorkun, 2009), (Dehghan &
Saadatmandi, Chebyshev finite difference method for Fredholm integro-differential equation.,
2008), (Kurt & Sezer, 2008), (Maleknejad, Basirat, & Hashemizadeh, 2012), (Mirzaee &
Hoseini, 2014), (Yiizbasi, Sahin, & Sezer, 2011) , (Tiirkyilmazoglu, 2014). In addition, there
are numerical studies using Pell-Lucas polynomials (Yiizbas1 & Yildirim, 2020), (Yiizbas1 &
Yildirim, 2020). In this paper, we will study the system of m-order linear Fredholm integral
equation
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PIPNAEETRIES
n=0 j=1 (42)

b
= gi(x) +f Kl’](x,t)y](t) dt,l = 1,2,...,k,0 <a<x<bh

a j=1

with conditions

m
Z(a?jy,sj)(a) + bij,sj)(b)) = Anis i=01,...m—1 n=12,....k (43)
j=0

In this study, we will develop a method to obtain the approximate solutions of the problem (1)-
(2) by using matrix representation of the Pell-Lucas polynomials. Here, we will look for
approximate solutions as

N

W) = al Q) (44)

r=0

The definitions of the parameters in the statements (1)-(3) are given in the Table 1.

Tablo 5 Some expressions in (1)-(2)-(3)

Parameter Definition

alj, An,; real or complex constants

yj(n) (%) n. order derivative

yj(O) ) = y;(x) the approximate solution

Pl (x), 9i(x), K; j (x, t) analytical functions

K;j(x,t) extensible function to Maclaurin series
Q,(x) the Pell-Lucas polynomials

a;’ unknown Pell-Lucas coefficients

N chosen any positive integer
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2. PELL-LUCAS POLYNOMIALS
The Pell-Lucas polynomials Q,,(x) is (Horadam & Mahon Bro, 1985) (Horadam, Swita, &
Filipponi, 1994)

[n/2]
0, (x) = f on—2k - i - (n ; k) =2k (45)

k=0

And the recurrence relationship of Pell-Lucas polynomials Q,,(x) is (Horadam & Mahon Bro,
1985) (Horadam, Swita, & Filipponi, 1994)

Qn(x) = 2xQp_1(x) + Qr_2(x),n = 2
where the first two Pell-Lucas polynomials are Q,(x) = 2 and Q,(x) = 2x.

Additionally, the derivative relation of Pell-Lucas polynomials Q,,(x) is

Qn(x) = 2xQp-1(x) + Q2 () + 2Qn—1(x),n = 2. (4
6)

We can be approached to the given function y,{ (x) in the form

. & 47
W = ) al 0 0

r=0

where a is in form

1

dﬂ%@m@h[ﬁm%mm.

0

(48)

3. FUNDAMENTAL MATRIX RELATIONSHIPS

We can write the matrix representation of the Equation (6) as

. (49)
Y (x) = Q()A;.

Here, Q(x) and A; are
Q) = [ G® - QLA =[a) al - ai].

The Pell-Lucas polynomials @,,(x) can be expressed
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Q(x) = X(x)D"

where X(x) = [1 x

0 21§ 3 0 235
32 4
N+1
. N 2 3 N
0 N+1| N-1 2 N+3
| 2 2 2
and if N is even
r2 0 0 0
0 2t 1 0 0
1.0
2
202 1 0 222 0
11 210
3
0 zlg@ 0 2?%(0
_ 2 3
D=| »4 0 24 0
2l 2 3l1
0 015 3 0 25 4
32 4\ 1
N N+ 2
oN| 2 > N 2
2 N| N 0 NTZ| N2 0
2\ 2 2 2

Thus, the matrix representation of the relationship between the Equation (8) and the derivatives

of the Equation (8) can be expressed as
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2 0 0 0
1
0 21%(0j 0 0
2Og ! 0 222 2 0
1{1 2{0
0 21§ ! 0 23§
21 3

xN]and if N is odd

0 0
0 0
0 0
0 0
4
zaﬂ[ ] 0
4(0
0 255(
5
N
5
0 2 N+5
2
0 0
0 0
0 0
0 0
4
z4ﬂ[ j 0
410
5
0 255( J
50
N+4
2
N+2| N-4 0
2
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WL ))™ = QM (x)A; (51)

Also by using the expression (9), the matrix representation of the expression (Q)™ (x) is
Q™ (x) =X™(x)D" (52)

and here the n — th derivative of the expression X(x) is

XM(x) = X(x)(B)" (53)
where B is denoted as
0 0 O 0 0]
1 00 0
B = 2 0 0

000 N O
When the expression (12) is written in the expression (11), it becomes

Q™ (x) =X(x)(B")"D" (54)
And when the expression (13) is written in the expression (10), it becomes

4 (X)™ = X(x)(BT)"D”A;. (55)

Then, for the Fredholm part in the system (1), we can write the kernel function K; ; (x, t) as

N N
Ko = ) ) i ame (56)
m=0n=0
and
N N
Kijmo) = ) ) K" Q) Qu(®) (57)
m=0n=0
where

1 9™ ™mK(0,0)
tpmn _ e _ Ci =
ki'j = Tl 9 marn ;mn=201,...,N;i=12,...,k.

Thus, we can write the expression (15) and (16) in matrix form as

K j(x,t) = XK ;X7 (6); K = [fk{flj'" (58)
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and

Kij(x, t) = QK] QT(t); K, = [1k7"]. (59)
From the expressions (17) and (18), we gain the relation
K{; = D'K{,D or K{, = (D")"*K},D™". (60)

If, we substitute the expressions (8) and (19) into the expressions (1) for the Fredholm part,
then it becomes

k b
I(x) = QUOKY, QT (£)X()DT A; dt (61)
; j=1af !
or
k k
I(x) = ZZ X(x)DTKY,D j XT()X(6)dt tDTA,. (62)

Now, we substitute the expressions (19) into the expressions (21) and we gain

k k
I(x) = Z 2 X(x)K;NDTA,. (63)
i=1j=1
where
b
br+s+1 _ ar+s+1
N = JXT(t)X(t)dt = [n,.]; Ny = a1 ST 0,1,...,N.

a

Finally, substitute the expression (14) and the expression (22) in the expression (1) for i =
1,2,...,k, itis obtained

m k
Z Z PP (x) X(x) (BT)"DTA; = g,(x) + Z X(x)KE,;NDTA,. (64)

n=0 j=1

4. THE OPERATIONAL MATRIX METHOD

In this section, we will be developed a method to obtain approximate solutions of the system of
the Equation (1) under the conditions (2). So, we give the expression g;(x) in the form

gi(x) = X(x)D'G/ (65)
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depending on the Pell-Lucas polynomials. Then, we write the expression (24) in the expression
(23) fori =1,2,...,k,as

m k k
> ) P X@)(BT)'DTA; - ) X(0)K,ND'A; ~ X(OD'G!.  (66)
n=07=1 =

Now, we write the residual R;(x) fori = 1,2,...,k, as

m k k
R,(x) ~ Z z PP (x) X(x)(BT)"DTA; — z X(x)KL;ND"A; — X(x)DG!.  (67)
=1

n=0 j=1
Consequently, we use the Tau method and we convert the expression (27) to the m(N-
1) linear equations by applying

1

(Ri(x),Q,(x)) = jRi(x)Qn(x) dx=0, n=0,1,...,N—2. (68)

0

Similarly, we substitute the expressions (14) into the expressions (2) forn = 1,2,...,kand i =
0,1,...,m — 1 and we gain

m-—1
(ang(a)(BT)fDTA,- + bg}jX(b)(BT)fDTA,-) = Ani- (69)
j=0

The Equations (27) and (28) generate m(N + 1) sets of linear equations. By solving this system
with the help of Matlab, the coefficient matrix A; and the solutions y,{} (x) are obtained.
5. NUMERICAL EXAMPLE

In this section, we will apply the methods in Section 3 and Section 4. We have made the
calculations for these applications in Matlab program. Thus, we will see that the method is
effective and reliable.

Example 5.1. We consider the system

p

1
Y1) +xy1(x) +xy,(x) =2+ f(yl(t) +y2()) dt (70)

1

Y2 (%) + 2x yo (x) + 2xy, (x) = =2 + f (2y1(0) + 2y,(1)) dt

\ -1

and the conditions
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y1(0) =y:(1) =0, y,(0) = y,(1) = 0. (71)

Since we applied the method in Section 3-4 for N = 2, we can write

(r2)" () = a5Qo(x) + a1 Q1 (x) + a3 Q2 (x)

" (72)
2)"(x) = agQo(x) + afQ1(x) + a3 Q2 (x)
and the residual of this problem becomes
R;(x) ~ X(x)(BT)?DTA; + xX(x)DTA; + xX(x)DTA, — X(x)K{ ;NDTA, 73
— X(x)K%{ ,NDTA, — X(x)DT G
and
R,(x) ~ X(x)(BT)?DTA, + 2xX(x)DTA, + 2xX(x)DTA; — X(x)K5 {NDTA, 7
— X(x)K5,NDTA, — X(x)DTGY.
where
2 00 000 11" 2 ~2
D=0 2 of,B=|[1 0 o], X(x)=|[x] .6I=[0].GE=]|0]|
2 0 4 0 2 0 x? 0 0
aj ag 2 0 2/3 1 0 0
A, =|ai|, A, =|af|, Q=[O 2/3 0]’ Kiy(x) =10 0 0]’
al a? 2/3 0 2/5 0 0 0
1 00 2 00 21 0 O
Klz(X) =10 0 O ,K21(x) =0 0 O ,Kzz(X) =10 0 0l.
0 0 O 0 0 O 0 0 O
Thus, we use the Equations (32) and (33) and we gain
4 20 4 28
—6a%+§a}+?a%—6a5+§a3—?a§=4 (75)
8 56 8 8
—12a$+§a}—?a%—12a5+§af—§a§ =—4 (76)
and for conditions we gain
y3(0) = X(0)DTA, = 2a} +2ai =0
y3(1) = X(1)DTA; = 2a} + 2a} + 6a} =0 7

y2(0) = X(0)DTA, = 2a% + 2a3 =0
y2(1) = X(1)DTA, = 2a3 + 2a? + 6a3 =0

Hence, we solve the system (34),(35),(36) and we obtain
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1 (78)

We put these coefficients in the Equation (31), and so we gain the approximate solutions as

y3(x) = —5.551115123125783e — 17 — 9.999999962747099¢ — 01 x

79
+9.999999962747100e — 01 x?, (79)

y%(x) = 1.000000011175870e + 00x—1.000000011175870¢e + 00x2. (80)

Here, the approximate solution and the absolute errors for y2 (x) are given in Table 2 and Figure
1. And the approximate solution and the absolute errors for yZ(x) are given in Table 3 and
Figure 2. Also, the absolute errors for N = 2,5 are given in Table 3. When all these tables and
graphs are examined, it can be said that the method is effective.

Tablo 6 The exact solution, the approximate solution and the actual absolute error of the system
(29)-(30) for y1(x)

Exact solution Approximate Solution Actual Absolute Error
xp  y(x) = —x+x? N=2 y;(x) N=2  e;(x)
0 0 —5.551115123125783¢ 5.5511e — 17

- 17
0.2 —0.16 —0.159999999403954 5.9605e — 10
0.4 —0.24 —0.239999999105930 8.9407e¢ — 10
0.6 —0.24 —0.239999999105930 8.9407e — 10
0.8 —0.16 —0.159999999403954 5.9605e — 10
1 0 5.551115123125783e — 17 5.5511e — 17

Tablo 7 The exact solution, the approximate solution and the actual absolute error of the system
(29)-(30) for y2(x)

Exact solution Approximate Actual  Absolute
Solution Error
X y(x) = x — x? N=2 y3(x) N=2 e5(x)
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0.2

0.4

0.6

0.8

0.16

0.24

0.24

0.16

0.160000001788139

0.240000002682209

0.240000002682209

0.160000001788139

Tablo 8 The actual absolute error of the system (29)-(30)

0.2

0.4

0.6

0.8

N =2,

e;(x;)
5.5511e — 17
5.9605e — 10
8.9407e — 10
8.9407e — 10
5.9605e — 10

5.5511e — 17
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Actual Absolute Error

0

N =2, N =5,

es (x;) es (x;)

0 1.5828e-17
1.7881e — 09  8.5573e-14
2.6822¢ — 09 1.3161e-13
2.6822¢ — 09 1.3258e-13
1.7881e — 09 8.7871e-14
0 2.1519e-16

1.7881e — 09
2.6822e — 09
2.6822e — 09

1.7881e — 09

N =5,

e (x;)
1.1744e-17
1.6507e-13
2.5128e-13
2.5503e-13
1.7162e-13

6.3068e-17
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6. CONCLUSIONS

In this work, we developed a method based on Pell-Lucas polynomials that solves numerically
the system of linear Fredholm integral equation. For the method, the problem was reduced to
the algebraic equation system. The coefficients of this system were determined depending on
the Pell-Lucas polynomials. The solution of this system give us the coefficients of the
approximate solution. Thus, approximate solutions were obtained based on Pell-Lucas
polynomials. The application of the method was also made and it was seen with the help of
tables and graphics that the method was effective. The method can also be improved for the
Volterra integral part if the necessary adjustments are made.
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MATHEMATICS EDUCATION CREATING FEAR AND MISCONCEPTION
Dr. ANNA NEENA GEORGE
ASSOCIATE PROFESSOR, GVM’S DR. DADA VAIDYA COLLEGE OF EDUCATION
PONDA-GOA

Mathematics is the most misunderstood, hated and feared subject. The need of the subject and
its role in human life is scarcely clear to people, in general. The damage is done in the teaching
of the subject by emphasis on the manipulation of symbols and getting the correct answer
swiftly. Mathematics learning needs to embrace the meaning of the subject rather than play
with symbols for marks. The understanding of the problem and the concepts have been
relegated and replaced with extreme emphasis to speed of finding the ‘right answer’. The very
crux of mathematics teaching is to develop problem solving skills and to apply it in real life
context. It is supposed to make humans think and rationalize.

Cobb et al. (1991) suggested, the purpose for engaging in problem solving is not just to solve
specific problems, but to 'encourage the interiorization and reorganization of the involved
schemes as a result of the activity’. Schoenfeld(1994) opines the conventional learning of
mathematics only enables students to perform algorithmically and understand mathematics
without reasoning, Jenning and Dunne (1999 )have expressed the view that most students have
difficulty in applying mathematics in real-world situations and Van den Heuvel-Panhuizen
(1988) argues that students will most likely fail to remember the concepts and will be unable to
apply mathematical concepts.

In this paper the discussion will be about the wrong understanding of mathematics developed
by faulty teaching methods. The amount of fear and misconception due to formal education and
emphasis on knowing the algorithm while street children and semi-literates use mathematics
with proficiency.

REFERENCES

Cobb, P., Wood, T. and Yackel, E. (1991). 'A constructivist approach to second grade
mathematics'. In von Glaserfield, E. (Ed.), Radical Constructivism in Mathematics Education,
pp. 157-176. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Jennings, S. and Dunne, R.(1999), Match Stories Real Stories, Real-life Stories.
http://lwww.ex.ac.uk/telematics/T3/maths/actar01.htm.

Panhuizen, V.D.H.(1988). Realistic Mathematics Education Work in Progress. Mathematics
Education in the Netherlands: a Guided Tour. http://edweb.gsn.org/edref.sys.learn.html.

Schoenfeld, A.H.(1992).On Mathematics as Sense-Making: An Informal Attach on Unfortunate
Deverce of Formal and Informal Mathematics. In: Coss, J.F., Perkins, D.N. and Segal, J.W.
(Eds), Informal Reasoning and Education. Hillsdale, NJ: Erlabum, 311-344.

PROCEEDINGS BOOK




STATISTICAL KOROVKIN AND VORONOVSKAYA TYPE THEOREM FOR THE
CESARO SECOND-ORDER OPERATOR OF FUZZY NUMBERS

Prof. Ass. Dr. Valdete Loku
University of Applied Sciences Ferizaj, Rr. Rexhep Bislimi,
Pn. Ferizaj, 70000, Kosova
ORCID NO: 0000-0003-4977-5037
Prof. Dr. Naim L. Braha

ILIRIAS Research Institute(www.ilirias.com) and pn, Janina, Ferizaj, 70000, Kosova
Department of Mathematics and Computer Sciences, University of Prishtina,
Avenue Mother Teresa, No-4, Prishtine, 10000, Kosova
ORCID NO: 0000-0001-8335-1129
ABSTRACT

In this paper we de_ne the Ces_aro second-order summability method for fuzzy numbers and
prove Korovkin type theorem, then as the application of it, we prove the rate of convergence.
In the last section, we prove the kind of Voronovskaya type theorem and give some concluding
remarks related to the obtained results. Mathematics Subject Classi_cation (2010): 40A10,
40C10, 40E05, 40A05, 40G99, 26E50.

Keywords: Ces_aro second order summability method, statistical convergence,

Korovkin type theorem, rate of convergence, VVoronovskaya type theorem.
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YUKSEK MERTEBEDEN HOMOJEN OLMAYAN BiR ADi DIFERANSIYEL
DENKLEMIN NUMERIK YONTEMLE COZUMU UZERINE

ON SOLUTIONS OF A HIGHER ORDER NONHOMOGENEOUS ORDINARY
DIFFERENTIAL EQUATION WITH a NUMERICAL METHOD

Ars. Gor. Elif NURAY YILDIRIM

Istanbul Ticaret Universitesi, Insan ve Toplum Bilimleri Fakiiltesi, Matematik Béliimii,

Istanbul, Tiirkiye
ORCID NO: 0000-0002-2934-892X
OZET

Yuksek mertebeden diferansiyel denklemler modelleme stirecinde 6nemli bir role sahiptir.
Cozliim i¢in hangi yontemin kullanildig1 da bir o kadar onemlidir. Bu ¢aligmada, homojen
olmayan bir baslangi¢ degeri probleminin yaklasik ¢oziimiinii elde etmek i¢in, tiretici ¢ekirdekli
Hilbert uzay1r metodu kullanilmistir.. Uretici ¢ekirdek fonksiyonu elde edilmis, iizerinde
calisilan problem homojen hale getirilmistir. Sonuglar grafiklerle sunulup, mutlak hatalar ve
goreceli hatalar tablolar halinde verilmistir.

Anahtar Kelimeler: Uretici Cekirdek Yontemi, Homojen Olmayan Adi Diferansiyel
Denklemler, Baglangi¢c Deger Problemi, Yaklasik Coziim

ABSTRACT

Higher order differential equations (ODE) has a vital role in the modelling. It is also important
which method is used for the solution. In this study, with the purpose of obtaining the
approximate solution of a nonhomogeneous initial value problem, reproducing kernel Hilbert
space method is used. Reproducing kernel function has been obtained and the problem
transformed to the homogeneous form by using a special transformation function. The results
have been presented with the graphics. Absolute errors and relative errors have been given in
the tables.

Keywords: Reproducing Kernel Method, Nonhomogeneous Ordinary Differential Equations,
Initial VValue Problems, Approximate Solution
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IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS INVOLVING THE
HADAMARD FRACTIONAL DERIVATIVE

Amouria HAMMOU
Laboratoire des Mathématiques Appliquées et Pures, Université de Mostaganem
B.P. 227, 27000, Mostaganem, ALGERIE
ABSTRACT

In this paper, we establish sufficient conditions for the existence of solutions of a class of initial
value problems for impulsive fractional differential equations involving the Hadamad fractional
derivative of order 0 < r < 1. These results are based on fixed point theorems.

Key words: Initial value problem, fractional differential equation, impulsive, Hadamard
fractional derivative, fractional integral, fixed point theorem.

AMS Subject Classification: 26A33, 34A37

1 INTRODUCTION

For 0 < r < 1; this paper deals with the existence of solutions of initial value problems (I\VVP
for short), for the impulsive fractional order differential equation,

Hpy(t) = f(t; y(t); foralmosteacht €] = [1; T]; (1.1)

A\t =t = L, (y(t)); k=1,... ,m; (1.2)

y(1) = 0; (1.3)

where D is the Hadamard fractional derivative, f: ] x R — R is a continuous function,
Ii:R-oR k=1,...,m;1=ty<t;<..<ty<tme =T, A\t =t, =yt —y(ty),
y(tH) = ,}Lrgl+(y(tk + h)),and y(t;) = ’}Lrgl_(y(tk + h)) represent the right and left limits
of y(t)att=tk, k=1, ... ,m.

2 PRELIMINARIES

2.1 Notations and Definitions

In this section, we introduce notations, definitions, and preliminary facts that are used in the
remainder of this paper.

Let J =[1; T] be a compact interval, C([1; T];R) be the

Iyl = sup{ly(®):1 <t <T},
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and we denote by L! ([1; T];R) the Banach space of functionsy : [1; T] — R that are Lebesgue

integrable with norm

T
yll 2 = [ ly(o)lde.

AC([1; T],R) is the space of functions y : [1; T] =R, which are absolutely continuous.

Theorem 2.1 (Arzela-Ascoli theorem) Let A be a subset of C(J;E) ; A is relatively com-
pact in C(J;E) if and only if the following conditions are met:
@) The set A is bounded ie :
3k > 0: [f(O)| <k, VxE€JandV f € A.
(b) Set A is equicontinuous ie :
Ve> 0,38 > 0: |ty — t5] <8 = |If (&) — fE)Il < e forallty, t, €] and all f € A.
(c) Forall x € J:set {f(x), f € A} c E is relatively compact.

Definition 2.2 The Hadamard fractional integral of order r for a function h : [1;+0)— R is
defined as

1

r -
I"h(t) = =

tag byr—1 (&)
f1 (logs) —ds, 7>0,

provided the integral exists.
Definition 2.3 For a function h given on the interval [1;+0); the r Hadamard

fractional-order derivative of h, is defined by

(?Dh(t)) = ﬁ(t%)n f: <log£)n_r_1@ds,n —1l<r<nn=|[r]+1

Here n=[r] + 1 and [r] denotes the integer part of r and log(.) = loge(.).

2.2 Fixed point theorem

Theorem 2.4 [Banach's theorem] Let X a Banach space. N : X —»X is a contract-
ing operator, Then there is a single fixed point .

Theorem 2.5 [Schaefer's theorem] Let X be a Banach space and N : X - X com-
pletely continuous operator. If the set

E(N) = {x € X:x = ANx for A € [0,1]},
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is bounded, then N has fixed points.

Theorem 2.6 [Nonlinear alternative of Leray Schauder] Let X be a Banach space

and C a nonempty convex subset of X. Let U a nonempty open subset of C with 0 €U and
T : U —C continuous and compact operator.

Then either

() T has fixed points. Or

(b) There existu € dU and A € [0; 1] with x = AT(x).

3 EXISTENCE OF SOLUTIONS

Consider the set of functions

PC(J;R) ={y:J— R, y € C((tk; tk+1],R); k=1, ..., m; and there exist
y(tF) and y(tg), k = 1,..,m,with y(t{) = y(t)}-
This set is a Banach space with the norm

Iyllpc = sup{ly(®)|:1 <t < T}
And let
PC’(J;R)={y:J—- R, y € AC((tk; tk+1],R); k=1, ..., m; and there exist
y(tF) and y(t;), k = 1,..,m,with y(t{) = y(t;)}-
This set is a Banach space with the norm

Iyllpe, = sup{ly(®):1 < ¢t < T},
Set

] =]\{ty, ...t}

Definition 3.1 A function y ePC(J;R) NPC’(J;R) is said to be a solution of (1.1)-(1.3),
if y satisfies HDy(t) = f(t; y(t)) on J’and satisfies conditions (1.2)-(1.3).
To prove the existence of solutions to (1.1)-(1.3), we need the following auxiliary lemma.
Lemma 3.2 Let0 <r < 1andletp € C(J";R) NAC(J’;R). A function y is a solution of

the fractional integral equation

y(t) =—— [{(log 1 2245 s if t e [1; 1]

M(r)~1
log(t—tK)yq—1| 1 m tk t = P(S) r— 1P(5)
( logtk ) [F( ) tk—1 (log s) ds +Z 1Ik(y(tk))] l—( ) ) ds;

if t € (tk; tk+1]; k=1,...,m

if and only if y is a solution of the impulsive fractional 1\VVP
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HDy(t) = p(t); for each t €J’; (3.2)
A\t = t; = L,(y(t)); k=1,... ,m; (3.3)
y(1)=0;(3.4)

Our firrst result is based on the Banach fixed point theorem.

Theorem 3.3 Assume the following conditions hold:
(H1) There exists a constant | > 0 sush that
[f(t, u) - f(t, ; u)| <I|u-u| foreachte Jand u; u € R:
(H2) There exists a constant I*> 0 such that

[Ik(u) -1k(; )| < I* |u-u| foreachu;u e Randk=1,..., m:

I(m+1)(logT)" .
If [W + ml*] <1; (35)

then (1.1)-(1.3) has a unique solution on J.
Proof: To show the existence and the uniqueness of the solution of the problem (1.1)-(1.3) it
suffices to verify the fixed point hypotheses of Banach.

We define the operator F : PC(J;R) -»PC(J;R) by

_(logt—-ttN\* [ 1 m  rtk £\ 1 p(s) m
FOO=(E) | T fr, (log?) 22 ds + 2L, e (y(80)

1ot ot p(s)
+m£ (logg) 1Td5

The fixed points of the operator F are solutions of the problem (1.1)-(1.3).
Letx;y e PC(J;R)and t€J

l(m+1)(logT)"
IFE)(®) = FO)®I < [0 4 mis] |1z — ).,

We will now prove that F is a strict contraction by Banach's theorem.

2 Our second result is based on Schaefer's fixed point theorem.

Theorem 3.4 Assume the following conditions hold:

(H3) The function f : J xR —R is continuous.

(H4) There exists a constant M > 0 such that |f(t,u)| < M for each t €J and each u € R:
(H5) The functions Ik : R = R are continuous and there exists a constant M* > 0 such that

[Ik(u)] <M* foreachueR; k=1,..., m:
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Then (1.1)-(1.3) has at least one solution on J.

Proof:

We will use Schaefer's fixed point theorem to prove that F has a fixed point. The proof
will be given in several steps.

Step 1 F is continuous.

Let yn be a sequence such that yn -y in PC(J;R). For all t € J,

IF () (@) = F(y) (O

log(t — tk) o T £ (s, yn(s)) f(s, y(s)l
= logtk 1 l I—(T)Zk 1ft

+Z:l=1|1k(yn(t’:)) - Ik(Y(tE)) |l o )J (log )r 1 |f(S yn(s)) f(s, y(s)l

Since fand Ik; k=1,..., m; are continuous functions, we have

IFm) = F()lleo > 0asn — oo

Step 2 The image of a set bounded by the operator F is a bounded set in PC(J;R).
Indeed, it suffices to show that for everything p * there exists a positive constant | such
that for eachy € Bu*={y € PC(J;R) : ||y¥lleo < 1 *}we have [[F(y)|le < (}.We have,
for everything t € J,

[(m+ 1)(logT)"

IF(y) ()] < o+ D + ml x| =1

Step 3 F maps bounded sets into equicontinuous sets of PC(J;R).

Let 74,7, € J; 7;< T,, Bu* is a bounded set which defined in 2rd step and lety € Bu* . So
IF()(z2) = F)(T)l <

20<tk<‘rz— T1 Ik (J’(Q?))

step 4 Apriori bounds

[2[log(z, — 71)]" + (log ;)" — (logty)"] +

- I—(r+1)

Letthe set e={y € PC(J;R) : y = tF(y) for all 0 < < 1} be bounded.

Lety € &, we have

Y= g2 (ost) ™ 2t 521 o)

logtk

j'( )r S y(s) 3'(5))
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forall t €J.

We use Schaefer's theorem assumptions, then we get

Mm(logT)" M(logT)" B
Iyl < oD TTorn mM *= R,

We prove that the set ¢ is bounded.

From Schaefer's fixed point theorem, we deduce that F has fixed points which are

solutions of the problem (1.1)-(1.3).

In the following theorem we give an existence result for the problem (1.1)-(1.3) by applying
the nonlinear alternative of Leray-Schauder type and for which the conditions (H4) and (H5)
are weakened.

Theorem 3.5 Assume that (H2) and the following conditions hold:

(H6) There exist ¢, € C(J,R™)and 1: [0;+00) —(0;+00) continuous and non-decreasing such
that

If (&, w)| < @Y (Jul)forallte J;ueR:

(H7) There exists 1 * : [0;+00) —(0;+00) continuous and nondecreasing such that

k(W) <y * (JupforallueR;i=1,...,m.

(H8) There exists a number M > 0 such that

M

_\mwlg(logT)rl _\<p?(logT)Tl B
VDTG MG tm Y M

>1,

where
@ = sup{ s (t): t € J}.
Then(1.1)-(1.3) has at least one solution on J.
Proof:
When we have shown that the operator F : U -PC(J;R) is continuous and completely
continuous by the previous theorem.
1. For t €[0; 1], let y such that, for each t € J; we have y(t) = T (Fy)(t). Then the
Leray-Schauder theorem hypothesis we have for each t € J,

0 T 0 r
mez(logT) @r(logT)
¥ < PO "yl P g+ (o).

2. According to the Leray-Schauder theorem, there exists M > 0 such that ||y|| # M. Let
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U={y ePCUR): lIyll < M}.

The choice of U, results in that there is no y € dU such that y = tF(y) with t € (0; 1).
Therefore, after the Leray-Schauder nonlinear alternative, we deduce that F has a _xed
point y €U which represents a solution of the problem (1.1)-(1.3).

4 AN EXAMPLE

In this section we give an example to illustrate the usefulness of our main results. Les us

consider the impulsive fractional initial-value problem,

HDry(t)zM forae.te] =[1,e] t+30<r<1 4.1)
O+eH(1+ly (D))’ = e s T o &

3 S
Ay\t === Z—k=1,...,m;; (4.2
NE=3 3+Y Q)| (4.2)
y(1) =0: (4.3)
. — e_tx . . . . — x - - . -
Set f(t, X) = m ; (t, X) (SN X[0,+00), and |k(X) = 3ix’ XE [0, +00). Let x; y € [0, +00)

and t € J. Then we have

f(t, X)- (t, Y)I< = [x-Yl.

1

Hence the condition (H1) holds with | = o

Let x; y € [0; +00). Then we have

| Tk() — Ik(y) | <3 [y,

1

Hence the condition (H2) holds with I* = .

3. We shall check that condition (3.5) is satisfied

with T=e and m = 1. Indeed,

[l(m+1)(logT)T

et MM LI T+ 1) > = (4.4

which is satisfied for some r € (0; 1]. Then by Theorem (3.3), the problem (1.1)-(1.3) has a

unique solution on [1; e] for values of r satisfying (4.4).
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COEXISTENCE OF TWO LIMIT CYCLES FOR A CLASS OF PLANAR
DIFFERENTIAL SYSTEMS

Mohamed GRAZEM
Department of Mathematics, Faculty of Sciences, University of Boumerdes,
Boumerdes 35000, Algeria
Laboratory of Applied Mathematics, Faculty of sciences, University of Setif 1,
Setif 19000, Algeria
ABSTRACT

The existence of limit cycles is interesting and very important in applications. It is a key to
understanding the dynamics of polynomial differential systems. It is difficult to determine the
explicit expression of a limit cycle.

In this work, we investigate a class of a planar system and show that this system has two
algebraic limit cycles around the same singular point. Furthermore, these limit cycles are
explicitly given

Keywords: First integral, Periodic orbits, Algebraic limit cycle, Coexistence

INTRODUCTION AND PRELIMINARIES

A polynomial differential systems on the plane are systems of the form

- dx
X=—=P(X,¥)

- q ) (1)
y:E=Q(X'y)1

where P and Q are two coprime polynomials of R[X, y] and the derivatives are performed

with respect to the time variable. By definition, the degree of the system (1) is the maximum
of the degrees of the polynomials P and Q.

The algebraic curve U (X, y) =0 s called an invariant curve for system (1) if there exists a

polynomial K(x, y) (called the cofactor) such that

P(x, y) 2

o 00y T )= KU )

We recall that in the phase plane, a limit cycle of system (1) is an isolated periodic solution in
the set of all its periodic solutions. If limit cycle contained in the zero set of invariant
algebraic curve of the plane, then we say that it is algebraic, otherwise it is called non-
algebraic.
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In the qualitative theory of planar polynomial differential systems [5], one of the most
important topics is related to the second part of the unsolved Hilbert 16th problem, concerned
essentially by the number H (n) of limit cycles of (1) and their positions in the phase space.

There is an extensive literature on that subject, most of it deals essentially with detection,
number and stability of limit cycles.

Another interesting problem is to give an explicit expression of a limit cycle. Until recently,
the only limit cycles known in an explicit way were algebraic (see, for example, [1, 2, 3, 4, 7]
and references therein).

To my knowledge, if a system admits more than one algebraic limit cycle, each of these
cycles surrounds a singular point different from the other points. For example, Bendjeddou
and Cheurfa [3] studied a class of quartic differential system and showed under certain
conditions, the existence of up to four limit cycles but each cycle surrounds a singular point
different from the others.

In this work, we are interested on the differential system of the form

x = P,(x, y) = abx + (x2 + yz)(— (a+b)x—2y+ x(x2 + yz)),
y =Qq(x,y)=aby + (x* + y?)(2x - (a + b)y + y(x* + y?))

where a and b are reals constants such that a >b > 0 . Within this class, we prove the

(@)

existence of two algebraic limit cycles surrounding the same singular point, moreover these
limit cycles are explicitly given.

Propositionl: The origin is the only singular point of the system (2) and is a unstable node.

Proof : We have

YRy (%, ¥) - xQ (%, y) = —2(x% + y?f,

thus the origin is the unique singular point of this system. Moreover the unigue eigenvalue of
the associated linearized system is A =ab >0, then the origin is unstable node.

THE MAIN RESULT

Our main result is as follows

Theorem1: The system (2) admits the two circles (T) : U(x,y)=x*+y?*~a=0 and
(I,) : V(x,y)=x*+y?*—b =0 as limit cycles. Moreover (I}) is an unstable, (T},) isa
stable and (T,) lies inside (I;)

Proof: It is easy to check that the system (2) possesses (I}) and (I',) as invariant algebraic
curves. The associated cofactors are respectively given

K, = 2(x2 + yz)(x2 +y? - b)
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and
K, 2(x2 + yz)(x2 +y? - a)
As the two circles (Fl) and ( ) do not pass through the origin, thus they are periodic

solutions of the system (2).
Let T, and T, denotes be the periods of (I}) and (I,) respectively. To show that ()

and (T,) are limit cycles, it is sufficient to check that

(1) = [ divix(t), y(t))dt = 0
and
I(r,)= [ divix(t) y(t)dt = 0.

According to theorem 3 of [7], we have

(1) = [} divlx(t) ylt)dt = [ K, (x(2) y(t))ot

0

and
3(r2)= [ div(x(t) y(t)dt = [* K, (x(t), y(t)) .
Therefore
(1) = [ 206 + y2) (2 + y? ~b)at
= ["2(x* + y?)J(a~b)dt >0
and

:ITZZ )(x? +y? —a)dt
= ["2x?+ )b a)dt < 0.

o

Consequently, (Fl) and ( ) define respectively an unstable limit cycle and a stable limit
cycle for system (2). This complete the proof of theorem1.

Examplel: In the system (2), we take a=1 and b =2, we obtain
)I(:2x+(x2 + yz)(— 3X—2)/+X(X2 + yz))’ (3)
y=2y+ (¢ +y?)@x -3y + y(x* + y*))

which has two limitcycles (I}) : x*+y®-1=0 and (T,) : x*+y?—2=0 Moreover, the

circle (T, ) lies inside (I;) as shown on the Poincaré disc in Figure 1.
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Stable limit cycle

Unstable limit cycle

() )

Figure 1 : (I) Represents the two limit cycles of the system (3) and

(1) its phase portrait on the Poincaré disc

CONCLUSION

In this work, we have studied a quintic system and we have shown that it admits two circles as
limit cycles surrounding the unique singular point, one inside the other (coexistence)

Finally, it is of interest to extend this study by answering to the following questions: Is there a
cubic or quartic system that exhibit two algebraic limit cycles surrounding the same singular
point?
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SURFACES WITH DENSITY IN MINKOWSKI 3-SPACE
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ABSTRACT

In this work, firstly we give some basic notations, definitions, theorems and results about
surface with density in Euclidean and Minkowski 3-space. After that, we give a summary of
informations about revolution surface and translation surface in Minkowski 3-space. Later, we
write the equation of minimal surfaces in Minkowski 3- space with linear density (in the case
o(X,y,2) = x, 0(X,y,z) =y and o(x,y,z) = z), and we characterize some solutions of the equation
of minimal graphs in Minkowski 3-space with linear density W= e®. Moreover, we write the o-
Gauss curvature and the ¢ - mean curvature formulae of the some revolution surfaces in

Minkowkski 3-space with radial density e~2°**+<. After this, we give some example and draw
the graphs of - minimal surfaces for some special cases via Matlab program.

Key Words: Surfeces With Density, Translation Surfaces, Minimal Surface, Minkowski 3-
Space, Graphical Surface
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TUBULAR SURFACES CONSTRUCTED BY SPHERICAL INDICATRICES WITH
DENSITY

Dr. Erdem KOCAKUSAKLI
Ankara University, Institute of Science, Department of Mathematics, Ankara, Turkey
ORCID NO: 0000-0003-0616-173X
ABSTRACT

In this work, firstly we give some basic notations, definitions, theorems and results about
surface with density in Euclidean and Minkowski 3-space. After that, we give a summary of
informations about canal and tubular surfaces in Euclidean 3 space. Later, we give the
parametrisations of tubular surface constructed by spherical indicatrices of any spatial curve in
Eucidean 3- space. In this work we construct the tubular surface according to the alternative
moving frame {N,C,W}. Moreover, we write the ¢-Gauss curvature and the ¢ - mean curvature
formulae of the tubular surfaces which constructed by spherical indicarices in Euclidean 3-
space with some density. After this, we give ¢-flat and ¢-minimal equations of these surfaces.
Moreover, we give the conditions for being ¢@-flat and ¢-minimal of these surface

Key Words: Surfaces With Density, Tubular Surfaces, Minimal Surface, Alternative Moving
Frame.
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ORDERS OF SOLUTIONS OF FRACTIONAL DIFFERENTIAL EQUATION
Dr. BEDDANI HAMID
Ecole Supérieure en Génie Electrique et Energétique d’Oran.
Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), Algeria
ABSTRACT

We study the solutions of the fractional differential equation
D@WF + A(2)DBf +B(2)f =0

where D@ and D®) are the Caputo fractional derivatives of orders and z is complex number,
A(z), B(z) be entire functions. We find conditions on the coefficients so that every solution that
is not identically zero has infinite order.

Key words. The Caputo fractional derivative, entire function, infinite order, complex domain.

INTRODUCTION

Recently, the complex modelings of phenomena in nature and society have been the object of
several investigations based on the methods originally developed in a physical context. These
systems are the consequence of the ability of individuals to develop strategies. They occur in
Kinetic theory [1], complex dynamical systems [19], chaotic complex systems and hyperchaotic
complex systems [25], and the complex Lorenz-like system which has been found in laser
physics while analyzing baroclinic instability of the geophysical flows in the atmosphere (or in
the ocean) [22, 26]. Sainty [23] considered the complex heat equation using a complex valued
Brownian. A model of complex fractional equations is introduced by Jumarie [14, 15, 16, 17],
using different types of fractional derivatives. Baleanu et al. [2, 3, 18], imposed several
applications of fractional calculus including complex modelings. The author studied various
types of fractional differential equations in complex domain such as the Cauchy equation, the
diffusion equation and telegraph equations [9, 10, 11, 12, 13]. Transformis a significant
technique to solve mathematical problems.Many useful transforms for solving various
problems appeared in open literature such as wave transformation, the Laplace transform, the
Fourier transform, the Bucklund transformation, the integral transform, the local fractional
integral transforms and the fractional complex transform (see [5, 21])

In this section [24], we introduce some notations and definitions for fractional
operators (derivative and integral) in the complex z-plane C as follows.

Definition 1. The fractional derivative of order a is defined, for a function f(z), by

o1 [ f®)dE
D )f(z)_F(l—a)O (Z_E)a,03a<1,
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where the function f is analytic in a simply-connected region of the complex plane containing
the origin, and the multiplicity of (z — £)® is removed by requiring log(z — &)“ to be real when

(z—§&) >0.
Throughout this paper, we assume that the reader is familiar with the fundamental

results and the standard notations of the Nevanlinna value distribution theory of meromorphic
functions (see [8]). Let p(f) denote the order of an entire function f, that is

_ lim lOgT(T,f)
p(f)_r—>+oo logr

where T(r; f) is the Nevanlinna characteristic function of f (see [8]).
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EXISTENCE RESULT OF A FRACTIONAL DIFFERENTIAL EQUATION OF
HADAMARD TYPE WITH INTEGRAL BOUNDARY VALUE CONDITIONS

Dr. Habib DJOURDEM

Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of
Oranl, Ahmed Benbella. Algeria

ABSTRACT

In this woek, we establish the existence of solutions for a fractional differential equations with
Hadamard fractional integral boundary condition. Our main result are obtained by using
generalization of Darbo’s fixed point theorem combined with the technique of measures of
noncompactness in the Banach algebras. An example is provided to illustrate our main results.

Keywords: Integral boundary value conditions; Measure of noncompactness; Hadamard
fractional derivative; upper semicontinuous function.
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LOGARITHMIC DERIVATIVE NEAR A SINGULAR POINT AND APPLICATIONS
IN LINEAR DIFFERENTIAL EQUATIONS

Saada HAMOUDA
Laboratory of pure and applied mathematics, University of Mostaganem, Algeria
ABSTRACT

The logarithmic derivative play an important role in the study of the growth and oscillation of
solutions of differential equations in the complex plane and in the unit disc. In this talk, we
will provide new estimates of logarithmic derivatives around an isolated finite singular point
by making use a suitable conformal mapping and an addaptation notions of Nevanlinna theory
of meromorphic function and Wiman-Valiron theory of entire function. As applications, we
investigate the growth of solutions of certain types of linear differential equations with non
meromorphic coefficients.

Keywords: Nevanlinna theory, Wiman-Valiron theory, logarithmic derivative, linear
differential equations, growth of solutions.
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DERECELENDIRILMIS ASAL iDEALLERIN GENELLESTIRILMESI UZERINE
BiR NOT

A NOTE ON A GENERALIZATION OF GRADED PRIME IDEALS

Dr. Ogr. Uyesi Rabia Nagehan UREGEN

Erzincan Binali Yildirim Universitesi Egitim Fakiiltesi Matematik ve Fen Bilimleri Egitimi
Bolima, Erzincan, Tirkiye
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OZET

Bu ¢alismada derecelendirilmis asal ideallerin bir genellemesi tanitilacaktir. Bu genelleme
yardimiyla derecelendirilmis asal idealler, derecelendirilmis zayif asal idealler gibi ¢esitli
ideallerin arasindaki iligkiler ortaya konulacaktir.

Anahtar Kelimeler: derecelendirilmis asal ideal, derecelendirilmis zayif asal ideal,
derecelendirilmis 2-yutan ideal, derecelendirilmis yar1 asalimsi ideal.

ABSTRACT

In this paper, a generalization of graded prime ideals will be introduced. With the help of this
generalization, the relationships between various ideals such as graded prime ideals and graded
weakly prime ideals will be revealed.

Keywords: graded prime ideal, graded weakly prime ideal, graded 2-absorbing ideal, graded
quasi primary ideal.
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STABILITY OF SOLUTIONS OF INITIAL VALUE PROBLEM FOR A CLASS OF
STOCHASTIC FRACTIONAL DIFFERENTIAL EQUATION WITH NOISE

Dr. Noureddine BOUTERAA
Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO),
University of Oranl, Ahmed Benbella. Algeria.
ABSTRACT

In this work, we will introduce a fractional Duhamel principle and use it to establish the well
boudedness and stability of a mild solution to fractional stochastic equation with initial data.

Keywords: Stochastic equation, Fractional derivative, Mild solution, Stability.
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